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Growth in global sea freight vs. GDP, energy, population
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Shipping emissions projections towards 2050
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IMO 50 % GHG reduction up to 2050 - Context'

* From 1970 onwards annually:
* 3 % freight growth;
* 2 % increase in fuel consumption

* 1% efficiency improvement, mainly through larger vessels

* None of the third IMO GHG scenarios (2014) indicated a reduction, in best case
stabilization

e Reaching the 2050 target will require:

* 3 -6 % annual efficiency improvements

e Measures to reach the 50% GHG reduction target

S SMART
~ MARITIME



Alternative scenarios for achieving 50% GHG reduction
from shipping in 2050

1-Low
and zero carbon fuels

2 - Climate mitigation through cooling

emissions at high seas
&

Offsetting through MBM
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1 — Low and Zero carbon fuels : Norway is unique since 75% of fossil fuel is used in the
transport sector, which makes electrification of transport a logical choice to cut CO2 by 40%

(Assumption: Norwegian grid is renewable, and not a mix due to import and export)
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1 — Low and zero carbon fuels:
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Renewable-energy based electricity + 3" generation Biofuels

.

Global electricity grid
based on 100%
renewables and 3rd
generation biofuels
are required if IMO
2050 target shall be
reached through
alternative fuels
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e The Figure shows a typical annual
operational profile with the associated
power demands for a supply vessel

operating in the North Sea (Troms
Offshore, 2015; in house data;

Fagerholt and Lindstad, 2000)
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The benefits of Hybrid power 0
options are larger in the o
Arctic than in the North Sea
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Annual fuel consumption as a function of engine,

battery and technology

Annual Average

Constant Variable Constant Variable

Fuel Consumption

Constant Variable

engine

: : : : : engine
Operational Mode Hours Power esnp'%:g e;;i:; ZHPE:; eSt;gel:fl speed & speed &
Battery Battery
hour kW gram/kWh ton
Dynamic Positioning -
DP 2400 1600 225 210 864 806 768 756
Stand By 600 1500 220 205 198 185 180 177
Port 2270 225 290 265 148 135 102 101
Transit Eco - 10 knots 3000 2300 205 200 1415 1 380 1 380 1359
Transit - 12 knots 400 3300 200 197 264 260 264 260
Transit Max - 15 knots 90 6000 204 204 110 110 108 106
Totals 8760 1625 3000 2880 2800 2760




Potential power setups, fuels and hull designs capable of
satisfying future EEDI requirements
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Potential power setups, fuels and hull designs capable of satisfying future EEDI requirements

Elizabeth Lindstad™*, Torstein Ingebrigtsen Bo™"

How to meet EEDI requirements?

Co,

EEDI = _
Tonnage X Distance
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Assessed options

AS IS: Full-bodied Aframax tanker with direct

driven FP propeller

To Be:

1. PTO/PTI & Battery Hybrid & CP propeller

2. Slender designs
3. LNG

4. Combinations of two or moreof 1 -3

Direct driven propulsion Aux. engines
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Costs of the alternative (million USD) Sfi

1 standardhulform Siender hullform

11 000 9800 kW

13000 11000 9800

13 000 kw 11 000 kW +

kW+ kW + 11 000 kW kW +
kw Hybrid + + LNG Hybrid +

LNG  Hybrid Hybrid

LNG LNG

Vessel cost excluding power & propeller 42 42 42 42 44 44 44 44
Power & propeller cost 8 8 7.3 7.3 7.3 7.3 6.9 6.9
Cost hybridization 35 35 3.5 3.5
Cost LNG 7.2 7.2 6.4 6.4
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Power [ KW]

Option 1: Slender hull designs

Power Requirement including aux.
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2015: Conventional hull
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Option 2: PTO/PTI & Battery Hybrid & CP propeller

=
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2020: Conventional hull and hybrid
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Source: Lindstad, E., Bg, T., ., 2018. Potential power setups, fuels and hull designs capable of satisfying future EEDI
requirements. Accepted for publication in Transportation Research Part D

T T T T

12 13 14 15 16 17
Speed [knot]

EEDI threshold 2020 - 2025
EEDI threshold 2025 -

EEDI threshold 2015 - 2019 —_—

Power [kW]

Power Cb=0.75
Power Cb=0.82

2020: Slender hull

14000 A

12000 A

10000 -

8000 A

6000 -

4000 A

2000

11

T T T

12 13 14 15
Speed [knot]

B EEDI test point
®  Full power speed

16

17



Option 3: LNG

e Up to 25 % reduction
in CO, through lower
carbon factor and
higher heating value

5-20 % reduction in
GHG emissions when
including methane slip

S SMART
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*) Highest reduction factors for DF obtained with micro ignition **) Dependant of S-content in pilot fuel
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Reduction
factors LPDF*, LPDF, HPDF, 4- HPDF,
compared to 4-stroke 2-stroke stroke, 2-stroke, slow

\[cle) Medium Slow speed medium speed
speed speed

25-28% 20-25% 20-26% 20-24% 20-24%
I s5-90% 75-90% 75-90% 25-30% 25-30%
sox = L% 98-99% 95-99%  95-97% **  95-97% **

Particulates >99% 95-98% 95-98% 30-40% N/A

Emissions profile of marine gas fuelled engines (Source: Stenersen & Thonstad, 2017)

CH4 slip reduction, 2010-2017 CH4 slip reduction, 2010-2017
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Source: Lindstad & Bg (2018)




Roundtrip
voyage cost
for vessels

sailing at
medium speed

N |

Trip cost [USD/DWT]
[8] 9%}
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Investment & Yearly cost - GHG reduction - Abatement cost

A y

' Aalto University
School of Engineering
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I Fullfills EEDI 2015
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I Fullfills EEDI 2025
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Cost of GHG reduction options satisfying
the 2025 EEDI requirements

Todays vessel - ‘ = ‘

Todays vessel with |
standard LNG technology

Slender vessel with |
hybrid propulsion

Slender vessel with
hybrid propulsion and -
best LNG technology

T
0 2 4 B 0 5 10 15 20 25
Total annual cost increase [%] GHG reduction [%&]

SMART Source: Lindstad, E., Bg, T., |., 2018. Potential power setups, fuels and hull designs
/"'\ MARITIME capable of satisfying future EEDI requirements, Transportation Research Part D

Source: Lindstad & Bg (2018)



Automatic tuning - through machine learning - of
combinator curves for Propulsion - ATTMAL

The primary objective of the ATTMAL project, is to develop an automatic controller of propeller speed and
pitch to reduce emission and fuel consumption of larger seagoing vessels, both on newbuildings and for
retrofit on existing vessels with CP-propeller.

MAROFF — ATTMAL Research Project — Project description

hine | i
Sea state Machine learning

Vessel speed -

Apitch Aspeed

/ Table lookup: \ Nominal Optimized
- propeller speed _@ propeller speed

Desired

speed I ' _
7] S MART 172 Nominal Optimized

__propeller pitch propeller pitch

“ MARITIME Bl &
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IPN —Application Optimal control of cpp propeller
by use of machine learning Main objectives

e Demonstrate a full-scale pilot system for optimal control of CPP
propeller

e Develop algorithms for automatic adjustment of propeller speed and
pitch during operations

e Evaluate environment impact on existing fleet or typical ship types

e Evaluate business cases for
e Retrofit

* New buildings?
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Work packages
e WP 1 - Simulator (SO — Torstein B)
e WP 2 — Al and control (SA — NN)
e WP 3 — Pilot (SA - NN)
e WP 4 — Environmental impact and business models (SO — Elizabeth)
e WP 5 — Dissemination and Exploitation

* WP 6 — Project managament

SMART



Bridging the Gap : Design speed, Boundary speed, Economic speed and
Environmental speed calm & Hs=3m
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Bridging the Gap : Design speed,
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Required power (kW)

Power and Fuel per nm Supramax —
Environmental speed
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Fuel consumption per nm (kg)

)

Fuel and cost calm water & Hs = 3m
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Cost in USD per nm (USD)
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Stricter EEDI thresholds gives less reward for energy
efficient — 2015 versus 2025 requirements
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Supramax fuel

and cost
Elizabeth
Lindstad

byt (el consumption is probably
about 40 maph 1 you go lower than
this, the consumption per mile wall
increase, but it will be guite flat from
d0-almph. Above that, ic really
sLarks b increase,” she wold Falrplag.

This concept applies egually to
bulkers and tankers, Lindstad gave
the exampde of a fully laden
63, 000dwr Supramax bulker running
an a fuel priced at UEDS00/ tomine,
Slowing from 15 to 12,5kt would
r:lrp'il_'all:r' resdece l'urlmnmmpti.-:m h}'
about 25 kg per nautical mile (nm,
from 180 kg /mm ta 155 kgdnm. Yet
reducing spesds further to 10kt only
cuts fuel consumption by about
10 kg/nm, from 155 kg/nm te about
145 kg/nm (see charts, page 16).

If the Supramax's abjective is to
minimise fuel consumpsion, then
the optimal speed 15 about 2kt, with
fuel consumprion of 1375 kg/nm.
BN LIRE, LT3 FUe] Lo e
Starts vo increase.

Lindstad noted thar other factors
alse contribute g the price of each
jeirnaey, such as newbuildings cosis,
capex, operating expenses, and
timecharter fiees, as well a8 bunker
fuecl, Vessels can show down, sving an
thieir bunker fuel costs, but this means
that many of these expenses are higher
per vovage, a5 it takes longer for the
wesse] to reach its destination,

Far this reasan, she caloulated that
the speed giving the lowest overall
cedt per im for the Supramax woald
be 12.5kt, at a cost of abowt USD012)
nm. If the wessel were to slow down,

Regulation sulphurcap

L Effects ofisioWs staam g ona6a,

LEEE S

g
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Motes: Data based on 183 days of sailing per year,
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Calculations include additional power required for real sea conditians.
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the cost would rise significantly,
increasing exponentially the slower

the vessel went.

Slowing from 12.5 to 10kt would

increase the cost by about USDS/nm,

for example, but slowing down a
further 2.5-7.5 kt would raise it by
USD22.5/nm, from USD115/nm to

USD137.5/nm.

Data from IHS Markit show that

so far this year, Capesize bulkers
have travelled at an average speed of

“In reality, fuel consumption is
also lower in ballast, so it doesn't
make sense to slow steam on the
ballast leg to save money,” she told
Fairplay.

Those vessels that are operating in
a strong market will have even less
incentive to reduce their speeds, with
Lindstad pointing out that vessels
operating in such a market usually
speed up on their ballast legs to
SECure more Cargoes,
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