

Interdiciplinary Approach

- from ship technology to fleet level assessments

WP5 MariTEAM work 2018

Download ship profiles from SeaWeb

Data cleaning

Access / download AIS data from Kystverket

Data cleaning

Access / download ECMWF weather data

Implement and test weather drag module, based on Kwon 2008

Develop and test ship track completer

Acquire port call data

Data cleaning

Implement port call data to improve ship tracks

Creation of emission curves for species: CO2, SOx, NOx, BC, CO, OC, EC

Testing of model, including operational profile, load curves, speeds

Data cleaning, code debug & improvements

Matching of each vessel's location with instantaneous wind and waves

Code to output emission: 0.1 deg lat x lon gridded data, on a daily accumulation, in netcdf format

Write model documentation

Run MariTEAM1 with and without the effects of 'weather' (ongoing)

Input MariTEAM emissions to Earth System Model (TBD)

: 105

AIS satellite messages 2017

2017 AIS raw messages position density number of messages per cell of 0.1 x 0.1 grid resolution

completed messages for container ships

Position density of containers completed messages number of messages per cell of 0.1 x 0.1 grid resolution

10 metre wind

Time: 2017-01-01 00:00 : Time: 2017-01-01 00:00

Data Min = 0.0, Max = 44.3, Mean = 6.2

47478 ships included

Ship location data: original AIS vs. generated by MariTEAM algorithm.

DWT vs Block coefficients

Dwt

 $\times 10^4$

Dwt

 $\times 10^4$

Dwt

 $\times 10^5$

Dwt

 $\times 10^4$

Data cleaning, examples

Speed over ground [knots], all container ships

Load distributions

10 metre wind

Time: 2017-01-01 00:00 : Time: 2017-01-01 00:00

Data Min = 0.0, Max = 44.3, Mean = 6.2

Climate Modelling: Norwegian Earth System Model

Interdiciplinary Approach

Model Intercomparison activities

iamconsortium.org

Founded 2007

EMF 27: Global Energy Model

Comparison Exercise

High confidence and high agreement requires broad efforts

Agreement

High agreement	High agreement	High agreement
Limited evidence	Medium evidence	Robust evidence
Medium agreement	Medium agreement	Medium agreement
Limited evidence	Medium evidence	Robust evidence
Low agreement	Low agreement	Low agreement
Limited evidence	Medium evidence	Robust evidence

Evidence (type, amount, quality, consistency)

The transport sector accounted for 27% of final energy use and 6.7 GtCO₂ direct emissions in 2010, with baseline CO₂ emissions projected to approximately double by 2050 (medium evidence, medium agreement). This growth in CO₂ emissions from increasing global passenger and freight activity could partly offset future mitigation measures that include fuel carbon and energy intensity improvements, infrastructure development, behavioural change and comprehensive policy implementation (high confidence). Overall, reductions in total transport CO₂ emissions of 15–40% compared to baseline growth could be achieved in 2050 (medium evidence, medium agreement). (Figure SPM.7) [6.8, 8.1, 8.2, 8.9, 8.10]

