

General Presentation

2017

Norwegian Centre for improved energy efficiency and reduced harmful emissions

SFI Smart Maritime

- Norwegian Centre for improved energy efficiency and reduced harmful emissions from the maritime sector.
- Centre for research-based innovation (SFI) granted by The Research Council (SFI-III)
- Main goals:
 - Improve energy efficiency
 - Reduce harmful emissions
 - Strengthen the competitiveness of the Norwegian maritime industry
- Duration: 2015 2023
- Budget: 24 MNOK / year
- Financing: 50% Research Council – 25% Industry Partners – 25% Research Partners
- Host institution: SINTEF Ocean AS (former MARINTEK)

Smart Maritime Partners

SINTEF Ocean

DESIGN, EQUIPMENT, SHIP BUILDERS

Smart Maritime Structure

- 5 Work Packages (WP) integrated through business cases (Sub-projects) in cooperation with industrial partners
- Multidisciplinary and holistic approach

9 PhD 8 Post Doc

WP1 Feasibility Studies WP leader: Haakon-Elizabeth Lindstad, SINTEF Ocean

The main purpose of feasibility studies is to enable investigation of alternative concepts early in the project to identify the most promising options.

Objective

Develop and test assessment models that enable ship designers and innovators to investigate a number of alternative designs at an early stage.

WP2 Hull and Propeller optimization WP leader: Sverre Steen, NTNU

Objective

Identify potential for energy savings by means of hull and propulsion optimization, and apply and introduce novel approaches to improve energy efficiency.

Objective

Improve current designs and explore novel technologies, systems and solutions for power generation which are energy and emission efficient.

Power Systems	Engine Process	Waste Heat	Hybrid Power
for E ³ O	Optimisation	Recovery	Systems
Flexible E ³ O Power Systems Variable load cycles Power/Propulsion System Simulation and optimisation PMS/EMS	Advanced combustion control Engine system optimisation Alternative fuels including LNG Exhaust gas cleaning	Combined cycles Turbo-compound systems Thermoelectric power generation Heat mangement	Hybrid concepts Energy storage systems (Batteries) Energy converters and transmissions Optimal control

WP4 Ship System Integration and Validation WP leader: Trond Johnsen, SINTEF Ocean

Objective

Enable performance evaluation and benchmarking of designs on a ship system level and validate the results through laboratory and full-scale tests.

WP5 Environmental and Economic due Diligence WP leader: Anders Strømman, NTNU

Objective

Systematically assess the environmental and economic performance parameters of different ship and shipping system designs.

Smart Maritime Centre Management

Centre Director Per Magne Einang

Deputy Centre Director Anders Valland

Adm. Coordinator Agathe Rialland

WP Leader (WP1) Haakon Lindstad

WP Leader (WP2) Sverre Steen

WP Leader (WP3) Eilif Pedersen

WP Leader (WP4) Trond Johnsen

WP Leader (WP5) Anders Strømman

ROADMAP 2015-2023

RESEARCH AREAS BY DISCIPLINES

Activities	WP1 - FEASIBILITY STUDIES	WP2 - HULL & PROPELLER OPTIMIZATION	WP3 - R POWER SYSTEMS & FUEL	WP4 - SHIP SYSTEM INTEGRATION & VALIDATION	WP5 - ENVIRONMENTAL & ECONOMIC DUE DILIGENCE		
2017	FCA methodologyReference vessel	 Propulsion Systems Performance in waves Effect of waves on Energy Saving Devices 	 Power Systems for E³O Engine Process Optimisation Alternative fuels Hybrid power systems 	 Integration of power system sub-models Virtual ship design, Simulation framework 	 Parameterized life- cycle model - STEAM Fleet level assessment. Inventory database 		
SP1 – ALTERNATIVE FUELS AND ABATEMENTS TECHNOLOGY			PERFORMANCE MEASURING AND ANALYSIS		LCA WELL-TO- PROPELL		
SP5 – SMART SHIP VISION / VIRTUEL TEST LAB			Joint activity				
SP7– SIMULATION-BASED CONCEPT DESIGN (building on SP 2, 3, 4 - 2016)	FUNCTIONAL CONCEPT ASSESSMENT METHODOLOGY	HYDRODYNAMIC MODELS	POWER SYSTEM MODELS	GYMIR - PERFORAMNCE SIMULATION	STEAM – ENVIRONMENTAL ASSESSMENT		
CASE 1 – DEEPSEA VESSEL SHIPOWNERS PERSPECTIVE, LOWER DETAIL LEVEL, QUICKER STUDY							
CASE 2 – OFFSHORE VESSEL SHIP DESIGNERS PERSPECTIVE, HIGHER DETAIL LEVEL, MORE STUDY TIME							
AD HOC ACTIVITIES: INFORMATION SHARING, THEMATIC / LITTERATURE REVIEW, WORKSHOPS							

Calendar 2017

Contact us at:

SmartMaritime@sintef.no www.smartmaritime.no

