

SFI Smart Maritime meeting 2018/9

RESISTANCE OF SHIPS IN A SEAWAY

Renato Skejic Post doc September 20, 2018. Trondheim, NORWAY

CONTENT

Introduction

- Preliminary design of ships
- Focus of the present work
- Total ship resistance
- Added resistance in a seaway
 - Short-wavelength models
 - Long-wavelength models
- Work in progress

Introduction

Preliminary design of ships

- Requirements:
 - total hydrodynamic resistance and power Affected by the ship operational profile:
 - Average ship speed and heading
 - Ship loading conditions

• Weather effects in open and deep water, coastal areas

Focus of the present work

• Development of *medium-fidelity methods* and tools for calculation of total ship resistance in waves and calm water

• Used approach:

- Application and development of modern, fast and reliable theoretical models capable to predict the total ship resistance in a seaway through the linear superposition of the calm water and added resistance in waves with accuracy compatible with common engineering/designer practice.

Total Ship Resistance - R_T

• Modified Doctors and Day (1997) method

 $R_T = R_F \left(1 + k_1\right) + \Delta R_F + R_W + R_A + R_H + R_{AW}$

- R_F = frictional resistance; ITTC'57 formula
- $1+k_1 =$ hull form factor
- ΔR_F = friction resistance due to hull roughness
- R_W = wave making resistance in calm water
- R_A = still-air resistance
- R_H = hydrostatic resistance due to flow separation at (dry) transom stern, Faltinsen (2005)
- R_{AW} = added resistance in waves (regular or irregular wave field)
- Calm water wave resistance models (deep water)
 - Michell wave resistance theory with/without the viscosity effects
 - **3D BEM**
- Added resistance in waves models (deep water)
 - Short-wavelength asymptotic theories
 Fujii and Takahashi(1975), Faltinsen et al. (1980), Takahashi (1987),
 NMRI (Tsujimoto et al. 2008; Kuroda et al. 2008)
 - Long-wavelength theories (Hull pressure/Momentum conservation) Maruo (1960), Salvesen (1974)

- Calm water wave resistance models (deep water)
 - Michell water wave theory with/without the viscosity effects

(Tuck; 1974 and Lazauskas; 2009 models)

- **3D BEM**

(Dawson; 1977 model - double body fluid flow)

Wigley monohull

B/T = 1.6, L/B = 10.0, $C_B = 0.444, C_P = 0.667$

• KRISO Very Large Crude Carrier 2 – KVLCC2 (C_B = 0.8098)

• KRISO Container Ship – KCS ($C_B = 0.651$)

NTNU

Added Resistance in a Seaway- R_{AW}

'KVLCC2'

Moeri tanker

 $C_B = 0.8097$

- Short-wavelength asymptotic theories ($\lambda \ll 0.5L$)

(importance of the ship bow shape effect) Fujii and Takahashi(1975), Faltinsen et al. (1980), Takahashi (1987), NMRI (Tsujimoto et al. 2008; Kuroda et al. 2008)

Influence of the bow shapes on added resistance - head (head beam) waves

Applicability of the NMRI method (Tsujimoto et al. 2008; Kuroda et al. 2008)

(NMRI - National Maritime Research Institute - Japan)

Faltinsen et al. (1980)

$$\overline{R}_{X} = -\int \overline{F}_{n} n_{1} dl$$

$$\overline{F}_{n} = \frac{1}{2} \rho g \zeta_{a}^{2} \left[\frac{1}{2} \frac{k_{1}}{k_{0}} - \frac{1}{2} \cos^{2}(\chi - \theta) + \frac{1}{2} \frac{k_{2}}{k_{0}} \sin(\chi - \theta) \right]$$

Type of the tested bodies:

- Long-wavelength theories (Hull pressure/Momentum conservation)
 - Salvesen (1974)

KVLCC2 ($C_B = 0.8098$)

Added resistance waves for the 'KVLCC2' - Moeri tanker in range of the incident wave $\eta \in [0^{\circ}, 180^{\circ}]$ and wave length to ship length ratios $\lambda/L \in [0.29, 2.5]$ at Froude number at Froude number Fn = 0.142. Comparison with Lee et al. (2013) (squares; green and black) experimental results and Seo et al. (2014) (red and blue) computational results

NTNU

Maruo (1960)

$$R_{AW} = -\left\{ \begin{array}{c} \frac{\rho}{8\pi} \begin{bmatrix} \pi/2 & 3\pi/2 \\ \theta_0 & \pi/2 & -\pi/2 \end{bmatrix} \left| H\left(k_1, \theta\right) \right|^2 \frac{k_1(\theta) \left[k_1(\theta)\cos(\theta) - K\cos(\chi)\right]}{\sqrt{1 - 4\Omega\cos(\theta)}} d\theta \\ + \frac{\rho}{8\pi} \frac{2\pi}{\theta_0} H\left(k_2, \theta\right) \right|^2 \frac{k_2(\theta) \left[k_2(\theta)\cos(\theta) - K\cos(\chi)\right]}{\sqrt{1 - 4\Omega\cos(\theta)}} d\theta \end{array} \right\}$$

$$\Omega = \frac{U\omega_e}{g} \qquad K = \frac{\omega^2}{g} \qquad \omega_e = \omega - KU\cos(\chi)$$

 $\chi = 180^{\circ}$ Head Sea (Incident wave angle) $\chi = 90^{\circ}$ Port Beam Sea (Incident wave angle)

 θ_0 Critical angle

$$\begin{array}{c}
\theta_{0} & \text{crucal angle} \\
\theta_{0} = \begin{bmatrix} 0 & \text{for } \Omega \leq \frac{1}{4} \\
\text{arccos}\left(\frac{1}{4\Omega}\right) & \text{for } \Omega > \frac{1}{4}
\end{array}$$

$$k_{1,2} = K_{0} \frac{\left[1 - 2\Omega\cos\left(\theta\right) \pm \sqrt{1 - 4\Omega\cos\left(\theta\right)}\right]}{2\cos^{2}\left(\theta\right)} \qquad K_{0} = \frac{g}{U^{2}}$$

•The Effect of Surge Motion Mode

KVLCC2 ($C_B = 0.8098$) KCS ($C_B = 0.651$) **STERN** BOW **Ship surface** *F* F(x, y, z) = z - f(x, y) = 0 $C_B \mid n_x \mid C_W \mid C_{AW}$ $\vec{n} = n_x \vec{i} + n_y \vec{j} + n_z \vec{k}$ $n_x = -f_x / |\nabla F|$

Added	resistance	R_{AW}	for	KVLC	CC2	ship	in
regular	waves for	incide	ent w	ave an	gle <i>i</i>	$\eta = 18$	80°
(head sea) and wave length to ship length ratios							
$\lambda/L \in [0.29, 2.5]$ at Froude number $Fn = 0.142$.							

Hull particulars	'KVLCC2'	'KCS'		
$L_{PP} (\equiv L)$	320.0 m	230.0		
В	58.0 m	32.2		
T (even keel)	20.8 m	19.0		
C _B	0.8098	0.6505		
Ñ	3.12621*10 ⁵ m ³	0.5203*10 ⁵ m ³		

$$C_{AW} = - R_{AW} / (\rho g \zeta_a^2 B^2 / L)$$

Work in Progress

- Investigation of the Michell wave resistance integral with inclusion of the viscous effects for modern ship hull forms
- Investigation of the Maruo (1960) method for the estimation of the added resistance in waves (ITTC Recommended Procedures and Guidelines, 2017)
- Investigation of the effect of surge motion mode upon the added resistance in waves for modern ship hull forms
- Preparation of the journal article in JSR
- Preparation of the conference article PRADS 2019
- Implementation of the developed methods for calculation of the added resistance in waves in the industrial software solutions