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Industry and Research Trend

e Hybrid Power System
e System integration
e Simulation based design and analysis




Research Questions ®

How can one build a mathematical model of a
turbocharged diesel engine for various contexts of
marine propulsion or power systems?  problem aciniion Benchmark
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Research Methods and Results

Question CORCORRCIIRCD
Question

Literature Review
Research W / )
Methods Mathematlcal Machine Experimental
Modeling and Learni ..
. 8 earning Investigation
Simulation

EdC

Research
Results



Modeling Framework for a Turbocharged
Diesel Engine



Hierachical Structure of System Models ®

e Technical composition
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Hierachical Structure of System Models

 Level of Abstraction
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Procedure for building a system model from the
model library

State the missions of the Assign parameters and
simulation validate them

Select the target system Connect the component

and define the boundary models

Decompose the system Select proper physical
into technical components concept submodels
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Diesel Engine Models for Propulsion System
Simulation in Waves



Motivation — Propulsion in Waves

e Propulsion in Waves

Time Varying Engine
Load

/
: Effect on Performance
Propulsion Factors i
of Propulsion

Ventilation, Propeller
Emergence

Cavitation
Increased Propeller |
Load ‘ /

Added resistance

Ship in Waves
Wake Change

Ship Motion

Free Surface Effect
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Coupled Engine Propeller Model

* Develop a hull-propeller-diesel engine simulator
* Understand the system dynamics in propulsion in waves
e Compare the transient fuel consumption with the steady-state mapping value

Vessel
model

Vessel speed Thrust

Propeller

torque
Model

Wake variation
data

Shaft speed

Shaft
model

speed

v

Governor

Control command
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Engine Model Structure ®
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Engine Model ® ‘

* Modeling framework

Engine Control volume Thermodynamic states 0D single zone
Cylinder Heat transfer Convection only
Scavenge port Mass flow Isentropic comp. flow
Exhaust valve Valve lift A look up table
Mass flow Isentropic comp. flow
Crank mechanism  Transformation Kinematics only
Gas exchange Scavenging Empirical model (S-

shape model by Sher)
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Case Vessel — KVLCC2

CFD and experimental wake data available for the KVLCC2 hull
In three different wavelengths i.e. J\L=0.6, 1.1 and 1.6

Ship Particulars

Lbp (m)
Lwl (m)
Bwl (m)
Depth (m)
Draft (m)
v (md)

Cg

V (kts)

320.0
325.5
58.0
30.0
20.8
312622
0.8098
15.5

Propeller Particulars
D (m)
No of blades
Hub diameter (m)
Rotational speed (RPM)
Ag 1 Ag
(P/D)mean
Skew (°)
Rake (°)

9.86

1.53
95
0.431
0.47
21.15

Engine Particulars

Model Wartsila 8RT-flex68D
Bore (mm) 680

Rated MCR (kW) 25,040

Speed at rated power (RPM) 95

Stroke (mm) 2720

Mean Effective Pressure (bar) 20

Number of cylinders 8

Turbocharger 2 X ABB A175-L35
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Validation of the model ®

o Steady-state e Transient — no data to fit
o " o — Sensitivity analysis
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512
B 3 192 180
512 180
192 O

e System dynamics

-===~case C

case D | C

(92)

)
S

O

9

Speed (kts)
=)

9 3 i . i ' " = === Governor output
% : A Y 5 ’f‘ o 8 : 7 e : ——— Maximum allowable output(Smoke limiter)
RO St R, SN S I e S 17
= 2 g L A ’ ) 4 1
1 =
BN L T
0 i . = bttt ¢ 0.5
1 '.‘"-.‘_5"-"".“'.'"-..,..b‘::'\”..-"'\-..‘.A,"M"-.,__.-t"‘w-"‘ -u.h,..’-" o, .-"*”I %
V= + i K F uel limiting due
Ly 98 = t fficient .+’
E g ﬁ A ’ 0 lnSU llC]eﬂ -
— =0.5 _air supply ; )
.. i Qo g 0
e Thin: Engine shaft brake e 3 100 110 120 130 140 150
0 Thick: Propeller | | 0 i . i | . Time (s)

18



Simulation Results ® ‘

e Transient simulation vs. steadv state mappinad
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Findings

y

The simulator demonstrated the complex interactions
between a hull, a propeller, a diesel engine and a control
system.

For transient response of the diesel engine with a governor
and a smoke limiter, inertia of a turbocharger rotor plays
Important role as well as the control parameters.

Steady-state mapping of the specific fuel consumption shows
small deviations from the transient simulation with 0D model
(fixed combustion profile).
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Hybrid Propulsion System for Deep-sea Shippiru ‘
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Electrical Plan
ectrical Plants .

Shaft generator
Inverter

Battery e Reference to Tom Arne
Pedersen, “Bond graph
oL deling of mari
modeling of marine power
systems”, 2009
* . Aux. Load
@ e * Transient three-phase voltage,
current and frequency
Power Management System simulation using dg-frame

modeling and transformation
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Battery

Battery model
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Control System
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Resul
esult ®

 Reduction in amplitude of shaft speed and engine power
fluctuation

Shaft speed Engine

power
Reduction Mean 2.20 2.00
Ratio Maximum 2.85 2.62
Minimum 1.30 1.06
Standard 0.36 0.45

deviation

Correlation  ywave -0.35 -0.46
coefficient  Hyave -0.24 -0.46
to Lwave 0.24 0.13
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Result

Time series simulation of the propulsion shaft speed
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Result

* Time series simulation of the electrical power balance
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Resul
esult ®

e Average EfflClency
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« The simulation shows the possibility for reducing speed variation
even for the mechanical propulsion using the existing installation by
adding the battery system.

* The hybrid propulsion system utilized for peak-shaving in the
extreme sea cases showed an equivalent level of efficiency.

* Optimization of the power plant including the main engine and the
electrical power plant has potentials to improve the efficiency.

* Improvement for the battery control should be incorporated in the
design of the power plant.
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Experimental Investigation of the transient
emissions



When iIs transient load dominant in the marine
operation? ) ‘
e Transit in waves

 DP operation in the extreme sea

* Active heave compensation in drilling -
or crane operation

 Crane operation => Step load

> Cyclic load
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Research question ®

|s there an effect of a cyclic transient load on the average fuel
consumption and average NOx emission?

If so, can we quantify the influence?
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Methodology

o Definition of the test case of transient load

— Shaft speed(RPM): 1600

— Load torque, combination of following

* Period(s) : 5, 10, 20, 100
o Amplitude(Nm): 407Nm

 Mean Torque(Nm): 611, 1019, 1420
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Methodology ®
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Result

¥ Mean Power Load 24.6%

E/}ans‘;lent ¢ O  Mean Power Load 41%
casurcmen Mean Power Load 57.2%
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Resul

Transient % Mean Power Load 24.6% Quasi-steady Mean Power Load 57.2%
Measurement O Mean Power Load 41% Mapping Mean Power Load 41%
Mean Power Load 57.2% Mean Power Load 24.6%
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The effect of the cyclic transient load is found to be dependent
on the average load level and becomes more visible as the
load level is lowered.

The quasi-steady mapping method provides an estimation of
fuel consumption with a good accuracy, even without transient
correction, for most cases.

The effect of load smoothing for cyclic loads depends on the
shape of the steady-state fuel consumption rate around the
operating point,
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Use of Machine Learning Tools for Model
ldentification and model reduction



Motivation

e Model identification

— Highly non-linear relation between the time-varying parameters
and the operating conditions

— Compact representation of the dataset

» Model reduction

— Replacement of the high fidelity model with the data-driven
empirical model

39



ANN and SVM
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Surrogate modeling of the cylinder block ® ‘
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Process

Generation of the training
datasets from simulation

Training ANN and SVM models

Validation
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Generation of the training datasets ® ‘

* Propulsion in irregular waves

Vessel Shaft
model Speed —»| Governor
Vessel 30000 -
speed, Thrust Throttle §
motio . 22 25000 -
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Input — Output Data Screening

Input

1
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Input — Output Data Screening
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Training results

e Cross validation results (25%)

ISFC (g/kWh)  Cg A e Tse

ANN MAPE 0.26 1.14 0.61 0.66 0.25
SAPE 0.23 1.22 0.74 0.84 0.33

2
SVM MAPE 0.16 197 058 044 0.27

SAPE 0.20 270 1.38 0.74 0.67
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ISFC (g/kWh)

Verification
Simulation in the open-loop
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Verification

Simulation in the closed-loop
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Findings
J o
« ANN and SVM models showed good performance for

prediction of the key parameters for mean value cylinder
process model

* Generating training data by the total system simulator should
have both high variance and correlation to the physical laws.
Then, it becomes an effective method to avoid the curse of
dimensionality

 Model reduction comes with unavoidable loss of fidelity. The
effect of such loss should be evalueated on the system level.
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Conclusion
O

 Main contribution of the thesis

Machine learning

( /_ g
Experimental investigation

%

Architecture of model libraries
for turbocharged diesel engines
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Total System Simulator



Conclusion
@ |

e Further works

— Development of transient NOx model for real-time simulation and
validation

— Development of gas engine model
— Validation of the total system simulator by a full-scale test

— Experimental investigation of transient effect under cyclic load for
different type of engines
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Thank you for your attention!



	Transient Performance and Emissions of Turbocharged Diesel Engines for a Marine Power Plant
	Introduction
	Marine Power / Propulsion Plant
	Industry and Research Trend
	Research Questions
	Research Methods and Results
	Modeling Framework for a Turbocharged Diesel Engine
	Hierachical Structure of System Models
	Hierachical Structure of System Models
	Procedure for building a system model from the model library
	Diesel Engine Models for Propulsion System Simulation in Waves
	Motivation – Propulsion in Waves
	Coupled Engine Propeller Model
	Engine Model Structure
	Engine Model 
	Case Vessel – KVLCC2
	Validation of the model
	Simulation Results 
	Simulation Results
	Findings
	Hybrid Propulsion System for Deep-sea Shipping
	Electrical Plants
	Battery model
	Control System
	Result
	Result
	Result
	Result
	Findings
	Experimental Investigation of the transient emissions 
	When is transient load dominant in the marine operation?
	Research question
	Methodology
	Methodology
	Result
	Result
	Findings
	Use of Machine Learning Tools for Model Identification and model reduction
	Motivation
	ANN and SVM
	Surrogate modeling of the cylinder block
	Process
	Generation of the training datasets
	Input – Output Data Screening
	Input – Output Data Screening
	Training results
	Verification
	Verification
	Findings
	Conclusion
	Conclusion
	Slide Number 52

