SMART MARITIME

NORWEGIAN CENTRE FOR IMPROVED ENERGY EFFICIENCY AND REDUCED HARMFUL EMISSIONS FROM SHIP

ANNUAL REPORT 2021

The Research Council of Norway

TABLE OF CONTENTS

Summary of 2021	4
Vision and objectives	6
Research strategy and plan	10
Organization	17
Scientific activities and results 2021	32
Cooperation – national & international	49
Research team	58
Communication and dissemination	64
Statement of Accounts 2021	69

SUMMARY

Sail-assisted bulk carrier model in SINTEF Ocean's towing tank , Photo: SINTEF Ocean

ABOUT SFI SMART MARITIME

SFI Smart Maritime is a centre for research-based innovation dedicated to improving energy efficiency and reducing harmful emissions from ships. With particular attention to the Norwegian Maritime Industry, our mission is to provide our partners with technologies, tools and capabilities for effective identification, assessment and verification of performance optimization solutions.

The research activity is conducted in collaboration between SINTEF Ocean, NTNU and the Centre's 21 partners representing the entire maritime value chain: ABB, Bergen Engines, DNV, Jotun, Kongsberg Maritime, HAV Design, Norwegian Electric Systems, Siemens-Energy, VARD Design, Wärtsilä Moss, the Norwegian Shipowner association, the Norwegian Coastal Shipowners Association, the Norwegian Maritime Authority, and 8 major Norwegian ship owners; BW Gas, Grieg Star, Höegh Autoliners, Klaveness, Kristian Gerhard Jebsen Skipsrederi, Odfjell Tankers, Solvang and Wallenius Wilhelmsen. The strength of the Centre is our network and the constructive dialog between our research community and industry partners. Smart Maritime has positioned as an attractive meeting place and platform for cooperation within energy efficient and environment-friendly shipping.

Since its establishment in 2015, the Centre har worked with pushing the stateof-the-art in each research discipline, provided insight on potential emission reduction from ships, tested out novel technology solutions, developed prediction models for hydrodynamics and power systems simulation, simulation tools for performance evaluation and benchmarking of designs on a full ship system level.

There is no doubt about the Norwegian Maritime Cluster's dedication to reduce GHG emissions from shipping and achieve IMO Goals, as testifies the number of spin-off research and innovation activities from the SFI Smart Maritime collaboration.

HIGHLIGHTS 2021

Active collaboration, regular communication, perseverance and collective trust were the most important ingredients of the solid results delivered by SFI Smart Maritime in 2021.

Highlights from 2021:

- Smart Maritime Simulator Platform has reached a new milestone, with further integration of Hydrodynamics and ship models (WP2) and power systems simulation models (WP3), including: Gymir plugin for ShipX and main Gymir Platform Developments Wind-assisted propulsion and Virtual Captain.
- The Centre's research and industry partners have launched 6 associated projects: 3 competence projects, 1 innovation projects with support from the Research Council, 1 Green Platform, and 1 projects with support from EU H2020.
- Smart Maritime has been more present in the media and has disseminated regularly and actively from 10 Webinars. I addition, the teams has published 10 scientific articles, 6 conference articles, and 22 academic lectures.
- Smart Maritime actively contributed to international policy debate (IMO and EU).
- SFI Smart Maritime carried on with bi-annual network meetings, and finally gathered in person in Trondheim after a 1.5 year break due to Covidrestrictions.
- Smart Maritime has developed a worked on a Seamap for shipping decarbonization, based cross disciplinary work and competence development over the past 5 years, with the ambition to serve as reference document and guideline for the industry, regulatory bodies and academia.

VISION AND OBJECTIVES

Our vision is the greening of maritime transport, and by that enabling the Norwegian maritime cluster to be world leading in environmentally friendly shipping by 2025. Our mission is to provide the Norwegian maritime sector with knowledge, methods and tools for effective identification and assessment of solutions and technologies.

The three expected impact of SFI Smart Maritime are *increased competitiveness of the Norwegian* about SFI Smart Maritime maritime industry, increased energy efficiency in shipping and reduced harmful emissions from ships. This will be achieved through three types of results from the Centre: *knowledge and competence, integrated* methods and tools and novel technologies and solutions.

The expected outcomes include:

- 1. More efficient and accurate early stage assessment of new ship designs.
- 2. Introduce new validation methods, such as correlating data from real-life conditions with simulation- and experimental data.
- 3. More accurate predictions of fuel consumption and emissions from alternative hull, propulsion and power system configurations and operational profiles.
- 4. Improved optimization of ship performance vs. cost profile at various operational profiles and sea states.
- 5. Improved methods and tools for cost and fuel optimization on unit level and on fleet level.

ANNUAL REPORT 2021

Non Contraction of the second second

COMPETITIVENESS **& SUSTAINABILITY**

ENERGY EFFICIENCY

EMISSIONS REDUCTIONS

NOVEL TECHNOLOGIES & SOLUTIONS

INTEGRATED METHODS & TOOLS

KNOWLEDGE & COMPETENCE

INNOVATION

SFI Smart Maritime stimulates innovation through active involvment of industry partners in research activity:

- Engage our partners: identify their innovation process, challenges, potential.
- Involve our partners in R&D projects.
- Support industry partners in establishing innovation projects.
- Facilitate dialog and joint industry collaboration.
- Multidisciplinary workshops (network meetings).
- Lab support to test, verify and implement new technologies and solutions.
- Scientific input (papers, conference presentations, PhD projects, webinars).

Contribution to FN Sustainable development goals

Efforts to reducing harmful and GHG emissions from ships, and ensure regulations adequate are development at international level.

Contribution to safe operations and reduction of impact on marine environment.

bout SFI Smart Maritime

ANNUAL REPORT 2021

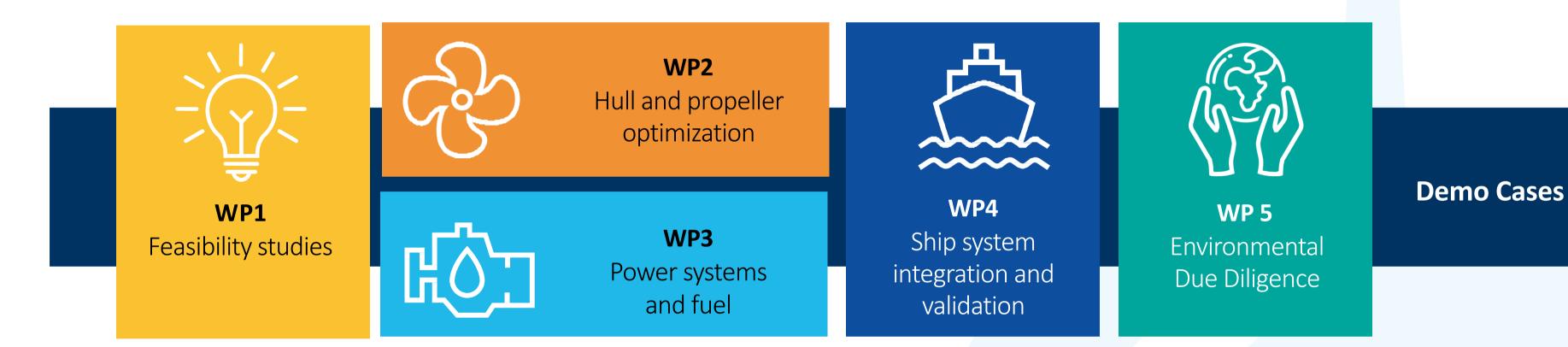
SFI contributes to promoting sustainable industrialisation and innovation in the maritime, transport and energy sectors.

Strengthen cooperation between public, private and research communities towards green shipping.

RESEARCH STRATEGY

ATHOMRAH RATE STAR HARMONIA, Photo: Grieg Star

It SFI Smart Maritime



about SFI Smart Maritime

Results

WORK PACKAGES / RESEARCH AREAS

The research strategy relies on five interconnected research areas (Work Packages, WP). WP1 serves as screening work package for identifying and assessing potential technologies and designs. WP2 and WP3 respectively develop models and tools for assessment of technologies and designs. These models are further integrated into a ship system simulation platform, enabling the virtual design and optimization of a ship by help of numerical simulation

model (WP4). This holistic system-centred ship design method uses a modular simulation and analysis framework for accurate performance assessment for ship and ship systems under realistic full-scale operation-al conditions. Finally, hybrid LCA methods are used in combination with profit and opportunity cost models to verify environmental and economic benefits (WP5).

WP1: Feasibility studies

Objective

Develop assessment model and method for effective investigation of alternative designs at an early stage. Test and validate through series of feasibility studies.

Research need and background

There is a lack of assessment methods and tools to enable comparison of alternative designs at the feasibility stage of the design process. Current studies and state-of-the-art design practice regarding concept, speed and capability tends to be based on marginal improvements of existing designs and solutions instead of challenging todays practice. One explanation is that most vessels for the merchant fleet have been built by shipyards according to quite standardized designs to minimize building cost while more specialized vessels generally have been improvements and amendments of existing designs.

Research tasks

Feasibility studies method & tool

GHG emissions reduction potential

Feasibility studies (cases)

WP2: Hull and propeller optimization

Objective

Identify potential for energy savings by means of hull and propulsion optimization, and introduce novel approaches to improve efficiency.

Research tasks

Research need and background

Currently, most merchant vessels are designed for optimum performance in calm water. There is an increasing understanding of the importance of including sea- keeping and manoeuvring-related aspects, but it has not found its way into practical design work yet. The tools currently used in design of offshore vessels have a potential for being applied in the design of merchant vessels. Despite this, design for a balanced set of operational conditions is still at the development stage even for offshore vessels. Hydrodynamic performance and propulsion systems, with emphasis on operation in waves, are specially addressed in WP2.

Calm water performance	Energy-saving devices	Novel
Friction-reduction Novel overall-design (main dim.)	Effect of waves and off-design operation Evaluation of in-service performance	Wa Optimi m

l propulsion systems

/ave-foil propulsion nization of sail-assisted merchant vessels

Operations in waves

Speed loss Interaction with engine Operational profile Above-water geom.

WP3: Power systems and fuel

Objective

Improve current designs and explore novel technologies, systems and solutions for energy efficient low- and zero-emission power and propulsion systems. Improve autonomy and reliability of power system.

Research tasks

Research need and background

installed power resources on calm water.

Power system optimization	Combustion engine process	Was
Modeling and simulation of power components and systems Fuel consumption estimation Steady-state and transient operating modes Alternative and emerging propulsion concepts	Advanced combustion control Novel injection strategies Alternative fuels (LNG, biofuels, alcohols, hydrogen, ammonia) Exhaust gas cleaning	Alternative sys Thermoel He

Reducing fuel consumption and harmful emissions for different vessel types at different operation profiles and modes to comply with current and future IMO legislations is currently the main challenge for maritime transport. Traditionally the power solutions for seagoing vessels have been designed to ensure that the vessels have the required power to be seaworthy in rough weather and to achieve its desired design speed utilizing 85 % of its

ste Heat Recovery

Energy recovery e power cycles and power stem arrangement electric power generation leat management

Hybrid power systems

Energy storage systems (batteries) Hybrid power generation, converters and distribution (AC and DC) Shore-to-ship battery charging

WP4: Ship System Integration and Validation

Objective

Enable performance evaluation and benchmarking of designs on a ship system level by combining monitoring data and simulations in a framework where component and subsystem models can be combined in a full ship system. Validate the results through laboratory and full-scale tests.

Research need and background The research activity in WP 4 will consider how to technically integrate the components and sub-system developed in WP 2 and 3 in one simulation framework where the full complexity of the future operational profile of the vessels is considered. This holistic system-centered ship design process will enable accurate performance assessment of full ship systems in realistic operational conditions, and assessment of effects of energy efficiency improving measures. In addition, continuous optimization of these systems can be achieved by the combination of real-time monitoring and appropriate system simulations.

Research tasks

Simulation framework

Open framework connecting physical domains and modeling regimes

Support of Discrete-event simulation to enable long simulation durations

Model library database

Virtual ship design testing

Methods for assessing system performance against operational profiles KPI's for benchmarking of alternative designs Ship configuration and scenario management

Simulator validation

Methodologies for collection, filtering and use of full-scale measurement data Validate and calibate the ship system simulations

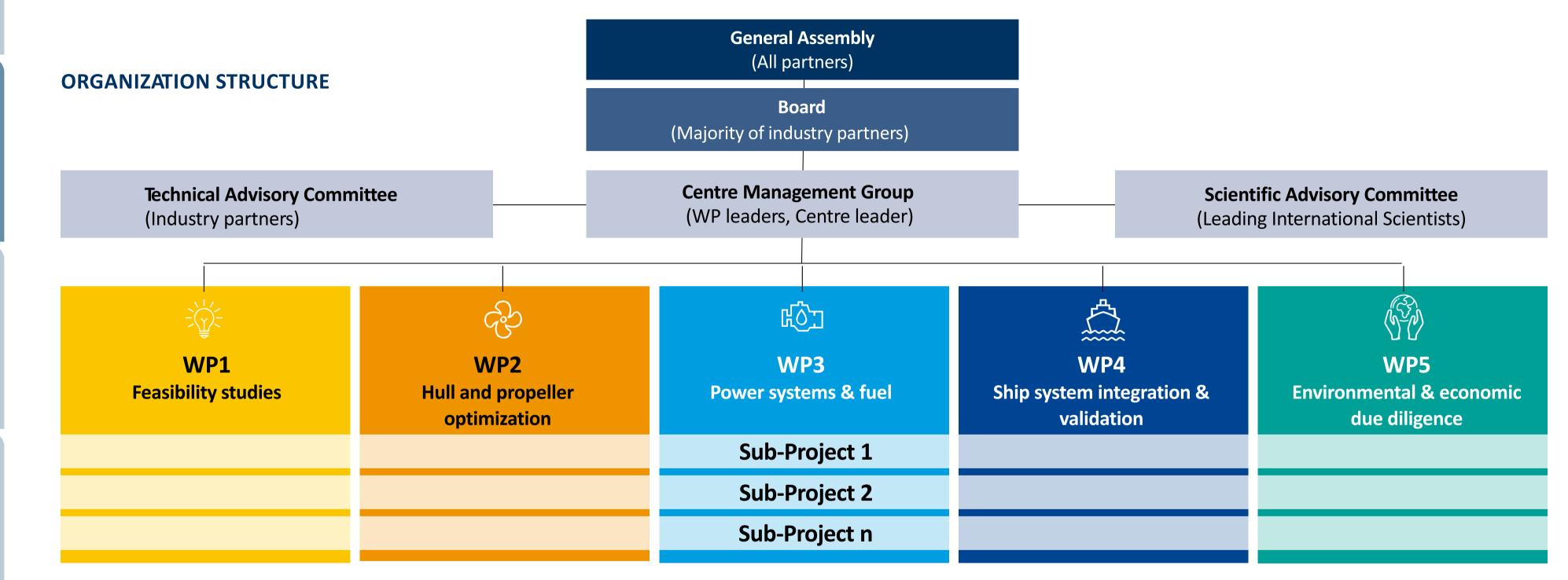
WP5: Environmental Due Diligence

Objective Systematically assess the environmental and economic performance parameters of different ship and shipping system designs. **Research need and background:**

Both international trade and maritime transport have increased at tremendous rates in the past decades. Maritime transport is estimated to contribute 3.3 % to the global anthropogenic CO₂ emissions, and the environmental consequences of increased trade are an important factor in the current climate debate. There is a need for detailed harmonized environmental and economic assessment of current and novel ship designs. In addition, there is a lack of suitable approaches for integration of such assessments with ship design and engineering workflows. WP5 will integrate state of the art methods for detailed climatic, environmental and economic analyses, primarily through the development and analysis of a fleetwide emission model - MariTEAM.

Research tasks		
MariTEAM	Spatial-temporal impact	Life c
Software development Theory-guided big data analytics	Environmental impacts located in time and space	Assess e through s

e cycle assessment	Scenario analysis
s environmental impacts ghout supply chain and service lifetime	Fleet and route development Comparison of technology options



ORGANIZATION

Sea of Heaven, Grieg Star. Photo: Reanmer Baldoza

SINTEF Ocean hosts the Centre in collaboration with research partner NTNU. The industry partners form the Technical Advisory Committee, covering major parts of the maritime value chain.

The Centre's long-term research activity is organised in five **Work Packages** (WP).

Board: operative decision-making body (7 members)

General assembly: representant from each Consortium partner.

Scientific Advisory Committee (SAC): audit and advice on research progress.

Technical Advisory Committee (TAC): advise the Centre Management on prioritization

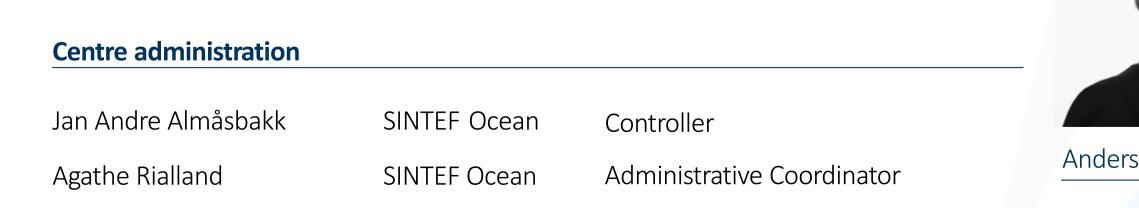
of R&D activities. Gathered twice a year at the biannual Network Meetings.

Board Members	Affiliation	
Jan Øivind Svardal <i>(Chairman)</i>	Grieg Star	
Jan Fredrik Hansen	ABB	
Sverre Torben	Kongsberg Maritime	Jan Øivind Svardal
Ove Bjørneseth	VARD Design	
Lars Dessen	Wallenius Wilhelmsen	
Beate Kvamstad-Lervold	SINTEF Ocean	
Bjørn Egil Asbjørnslett	NTNU	A lan
Sigurd Falch (observer)	Norwegian Research Council	1 CILL

Scientific Advisory Committee	Affiliation	Focus area
Professor Karin Andersson	Chalmers University of Technology, Gothenburg	🛞 WP 5
Professor Rickard Benzow	Chalmers University of Technology, Gothenburg	ନ୍ତି WP 2
Professor Harilaos Psaraftis	DTU – Technical University of Denmark	ل الله الله الله الله (₩P 4
Professor Osman Turan	Strathclyde University	∹∰: WP 1
Professor Friedrich Wirz	TU Hamburg	<u>ஸ்ர</u> WP 3

Lars Dessen

Sverre Torben


Jan Fredrik Hansen Beate Kvamstad-Lervold Ove Bjørneseth

Bjørn Egil Asbjørnslett

Centre Management Group	Affiliation	Role and responsibility	1
Trond Johnsen	SINTEF Ocean	Centre Director	1
Anders Valland	SINTEF Ocean	Deputy Director	
Elizabeth Lindstad	SINTEF Ocean	- WP1 Feasibility studies	Trond
Sverre Steen Sverre Anders Alterskjær	NTNU SINTEF Ocean	WP2 Hull and Propeller	0
Mehdi Zadeh	NTNU	Kong WP3 Power systems and Fuel	
Jon Dæhlen	SINTEF Ocean	WP4 Ship system Integration	
Anders Strømman Helene Muri	NTNU	WP5 Environment and economy	Sverre

ANNUAL REPORT 2021

Johnsen

Steen

Anders Valland


Elizabeth Lindstad

Stein Ove Erikstad

S. Anders Alterskjær

Mehdi Zadeh

Jon Dæhlen

Anders Strømman

Helene Muri

Agathe Rialland

Jan Andre Almåsbakk

The Centre collaborates closely with global industry players, national and international research communities and maritime networks. These partners are involved in scientific activity through business cases and subproject activity across the WPs.

INDUSTRY PARTNERS

Design, shipbuilding & equipment

ABB Bergen Engines HAV Design Jotun Kongsberg Maritime Norwegian Electric Systems Siemens Energy Vard Design Wärtsilä Moss

Ship operators

BW Group Grieg Star KG Jebsen Skipsrederi Höegh Autoliners Odfjell Solvang Klaveness Wallenius Wilhelmsen

Other partners

DNV Norwegian Shipowners' Association Norwegian Maritime Directorate Kystrederiene

Problem description Operational experience Personnel and resources Infrastructure

Knowhow Technologies Concepts Solutions

SMART MARITIME

SINTEF

International network and customers International R&D partners

about SFI Smart Maritime

ANNUAL REPORT 2021

RESEARCH PARTNERS

SINTEF Ocean (host)

Education Research Maritime experience Laboratories **NTNU** Dept. for Maritime Technology Industrial Ecology Programme

NTNU – Ålesund Faculty of Maritime Technology and Operations

SFI Scope aligned with Ocean Space Centre strategy.

RESSEARCH & INTEREST ORGANISATIONS

SINTEF Ocean (Host institution)

DNV AS

world's largest ship and offshore classification society and a leading technical advisor to the maritime, energy and oil & gas industries.

Norges Rederiforbund

Norwegian Shipowners' Association is a non-government organization serving more than 160 companies.

Kystrederiene

Sjøfartsdirektoratet The Norwegian Maritime Authority has jurisdiction over ships registered in Norway and foreign ships arriving Norwegian ports.

ANNUAL REPORT 2021

DNTNU

Department of Marine Technology; Industrial Ecology Programme; Department of Ocean Operations and Civil Engineering (Ålesund)

Kystrederiene

The Coastal Shipowners Association works for promoting sea transport and marine services with focus on innovation and environmental-friendly solutions.

Sjøfartsdirektoratet Norwegian Maritime Authority

SHIP OWNERS

Grieg Star AS

Open Hatch general cargo, conventional Bulk / appr. 40 vessels. All vessels are a part of the G2 Ocean pool, a joint venture between Gearbulk and Grieg Maritime Group.

SOLVANG ASA

Solvang ASA

LPG, petrochemical gases / 27 vessels. One of the world's leading transporters of LPG and petrochemical gases. The fleet consist of 27 vessels - semirefrigerated/ethylene carriers, LPG ships and VLGC (gas carriers).

Wallenius Wilhelmsen

Wallenius Wilhelmsen ASA

RoRo / 125 vessels

Global supplier of RoRo shipping and vehicle logistics, controlling 125 vessels, servicing 15 trade routes worldwide. Wallenius Wilhelmsen Ocean operates an fleet of 50 RoRo vessels

K

BW Group

LNG, LPG, Product tankers, Dry bulk, Chemicals, FPSOs / 370 vessels. BW Group is one of the world's leading maritime groups in the tanker, gas and offshore segments

KRISTIAN GERHARD JEBSEN **SKIPSREDERI** PART OF THE KRISTIAN GERHARD JEBSEN GROUP

Kristian Gerhard Jebsen Skipsrederi AS

Tanker, dry cargo, cement /50 vessels

Integrated shipping company involved in operation of tankers, dry cargo and specialized cement vessels. KGJS owned fleet: 13 Suezmax and LR 2 tankers and 2 OBOs in the SKS pool, 7 pneumatic cement carriers and Kamsarmax bulk carriers in the BTG pool

ANNUAL REPORT 2021

HÖEGH AUTOLINERS

Höegh Autoliners AS

PCTC / 45 vessels

Global supplier of transportation and logistics services for the RoRo segment, operating a fleet of owned and long-term charter PCTCs with capacity ranging from 2 300 to 8 500 ceu

Torvald Klaveness

Operating in the container and bulk segment, Klaveness owns and operates a fleet of 17 combination carriers from 200 to 562 DWT, and 6 Container vessels from 500 to 740 TEU. Klaveness Chartering has a fleet of 140 vessels under management.

Odfiell

Chemical tanker / 120 vessels

World leaders in the global market for seaborne transportation and storage of chemicals and other specialty bulk liquids. The fleet consists of five main categories: Supersegregators with multiple segregations, large stainless steel chemical tankers, medium stainless steel chemical tankers, coated tonnage and regional fleets in Asia and South America.

SHIP DESIGN & SHIP BUILDING

///Vdesign

HAV Design

HAV Design AS (previously Havyard Design & Solutions AS) delivers safe, energyefficient and environmentally friendly ship designs. HAV Design is part of the HAV Group (founded feb. 2021), an international provider of technology and services for maritime and marine industries, with special expertise in digitalisation, energy efficiency and zero-emission solutions in the marine and maritime industry.

Vard Design AS

Major global designers and shipbuilders of specialized vessels. VARD operates seven shipyards as well as subsidiary companies in the areas of design, electro, piping, accommodation and handling systems.

ANNUAL REPORT 2021

KONGSBERG

Kongsberg Maritime

(replacing former SFI partner Rolls-Royce Marine, fully integrated part of Kongsberg Maritime since April 2019) specialises in the development and delivery of integrated vessel concepts for traditional merchant vessels, ROPAX, fishing vessels, offshore, research vessels and offshore installations.

EQUIPMENT AND SYSTEM SUPPLIERS

ABB AS

Leading manufacturer of electric power and propulsion systems for ships. The product range also includes advisory systems for monitoring operational parameters.

Bergen Engines AS

A subsidiary of Rolls-Royce Power Systems within the Land & Sea Division of Rolls-Royce. Our medium speed gas and liquid fuel engines are supplied for a broad range of power generation applications.

Jotun AS

World's leading provider of paint systems and marine coatings to ship-owners and managers active in the newbuilding and dry-dock and maintenance markets.

Norwegian Electric Systems AS Norwegian Electric Systems delivers smart control systems and energy designs that result in safe, efficient and environmentally friendly ships,. HAV Design is part of the HAV Group (founded feb. 2021)

SIEMENS AS systems.

Wärtsilä Moss AS Manufactures advanced inert gas and nitrogen solutions for marine and offshore oil and gas applications. Wärtsilä Norway delivers solutions for ship machinery, propulsion, automation, ship design, automation systems and liquid cargo solutions.

about SFI Smart Maritime

ANNUAL REPORT 2021

norwegian electric systems part of HAV group

SIEMENS energy

Siemens is among the world's leading suppliers of diesel-electric propulsion

RESEARCH FACILITIES

The SFI makes use of own research facilities (SINTEF OCEAN and NTNU) as well as on-site laboratories from its industry partners.

SINTEF Ocean / NTNU

- Energy and machinery laboratory
- Hybrid power laboratory
- Fuel cell and hydrogen laboratory
- Towing tank
- Ocean basin
- Cavitation tunnel
- Circulating water tunnel
- Wave flume
- Marine Cybernetics Laboratory
- High Performance Computing: NTNU supercomputer Betzy, SINTEF cluster Unity2
- inhouse Softwares:
 - industry-standard ShipX workbench
 - Gymir software, for simulation of ships, including hydrodynamic, propulsor and machinery models based on agent-based discrete-event simulation in historic oceanographic data.

Industry partners' own laboratories

- Exhaust gas cleaning laboratory (Wärtsilä Moss)
- Power system laboratory (Norwegian Electric Systems)
- Laboratory for gas engine development, equipped with complete exhaust gas emission analysis (Bergen Engines)
- Clipper Harald, LPG tanker equipped with EGR, owner Solvang
- Simulation Centre (Kongsberg Maritime)

ANNUAL REPORT 2021

Open Simulation Platform (OSP)

open-source industry initiative for co-simulation of maritime equipment, systems and entire ships, co-developed by SINTEF, NTNU and DNV.

https://opensimulationplatform.com/

ENERGY AND MACHINERY LABORATORY

Full scale medium speed piston engines, complete hybrid propulsion system with batteries for energy storage and combustion rig for ignition and combustion studies.

Energy and Machinery Laboratory. Photo: NTNU/Sintef Ocean

25.5

0

COMBUSTION RIG Combustion rig for ignition and combustion studies.

Energy and Machinery Laboratory. Photo: NTNU/Sintef Ocean

power plants.

Energy and Machinery Laboratory.

TOWING TANKS

Used for investigation of hydrodynamic performance of ships: resistance, propulsion, seakeeping in head and following seas, and directional stability tests with free running models.

Photo SINTEF Ocean

OCEAN BASIN

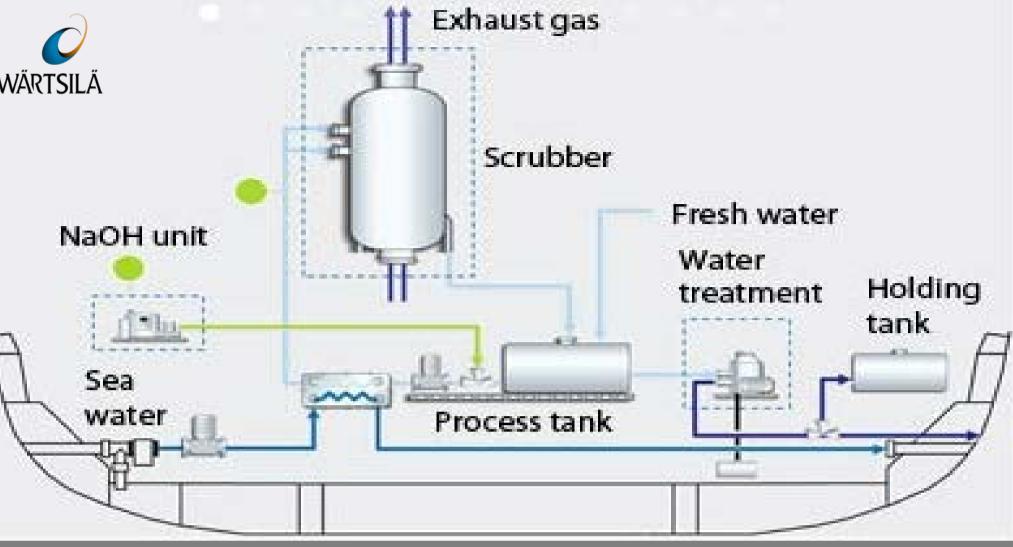
Used for basic as well as applied research on seakeeping and maneovering of ships, marine structures and operations. A total environmental simulation including wind, waves and current offers a unique possibility for testing of models in realistic conditions. Depth 10 m / Water surface 50 x 80 m

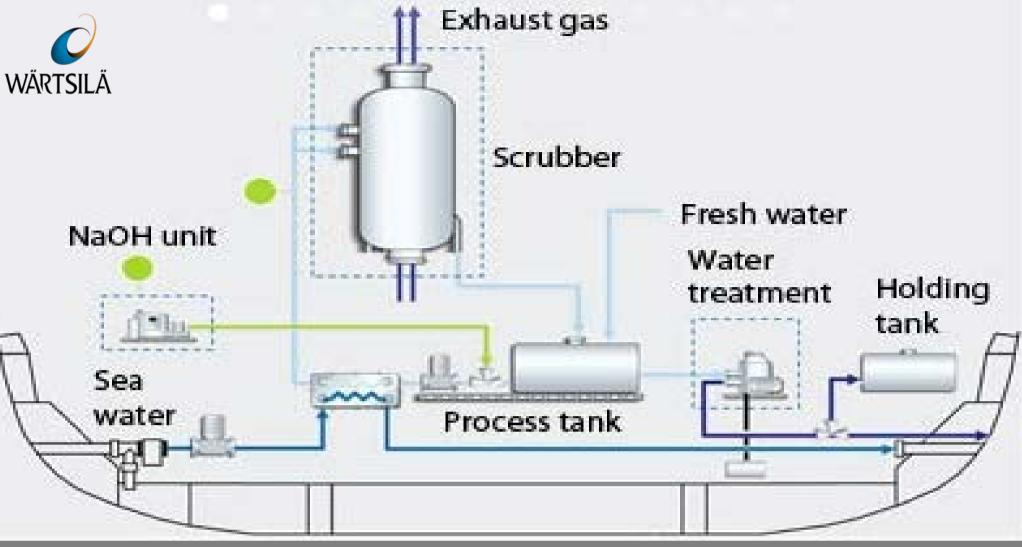
Photo SINEF Ocean/NTNU.

CAVITATION TUNNEL

The cavitation tunnel is used to investigate the hydrodynamic performance of different type of ship hulls, propulsors and other hydrodynamic objects.

> **CIRCULATING WATER TUNNEL** Test facility dedicated to optical measurement techniques and flo visualiza


BERGEN ENGINES LABORATORY


Bergen Engines Laboratory for Gas engine development operating on LNG and equipped with complete exhaust gas emission analysis including PM (Particulate Matter).

Laboratory for gas engine development (Rolls-Royce Bergen Engines)

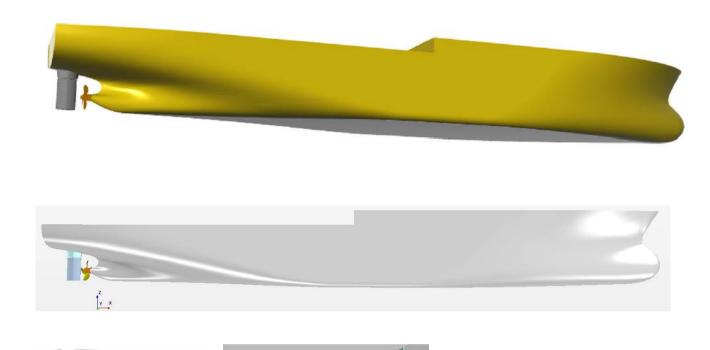
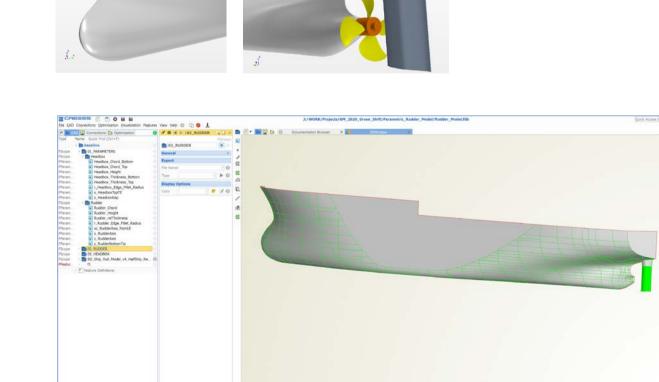

Exhaust gas cleaning laboratory (Wärtsilä Moss)

Photo: Norwegian Electric Systems


SINTEF Ocean bulk carrier (SOBC-1)

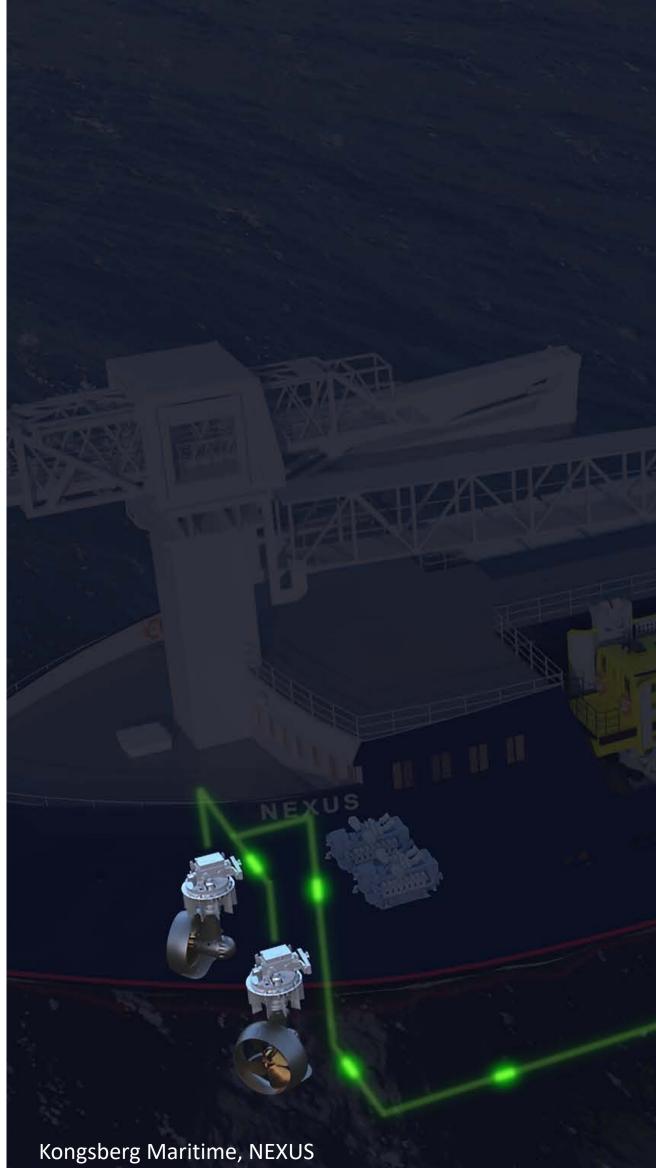
The SINTEF Ocean Bulk Carrier (SOBC-1) is an bulk carrier ship model with openly available geometry, including numerical models and a fully equipped physical model at scale 1/32.

It is representative of the medium-size, medium range, single-screw tank/bulk carriers, thus covering a large part of the global fleet.

This ship type is highly relevant for application of wind propulsors and therefore the SOBC-1 can be used as numerical and physical testbed.

Reference:

S. A. Alterskjær, T. Sauder, A. Bruyat, V. Krasilnikov (2021) "Ship design optimization – live from towing tank", SFI Smart Maritime Webinar, 27-04-2021 Sauder, T., & Alterskjær, S. A. (2022). Hydrodynamic testing of wind-assisted cargo ships using a cyber–physical method. Ocean Engineering, 243, 110206. Photos: SINTEF Ocean


ANNUAL REPORT 2021

The ship design features unconventional main dimensions originating from feasibility studies from SFI Smart Maritime, and it implements state-of-the-art solutions regarding the hull lines, controllable pitch propeller and high-efficiency rudder. The ship is intended to serve as a testbed –physical and numerical –for various energy saving solutions and innovative "low-"/"zero-" emission technologies. A test campaign was carried out in SINTEF Ocean's towing tank (May 2021), including both the conventional and wind-assisted propulsion tests. The results are published in Sauder & Alterskjær (2022).

SCIENTIFIC ACTIVITIES AND RESULTS 2021

HYDRODYNAMICS

- Calm water per
- Operationin wa
- Wind-powered

POWER SYSTEMS A

- Shore to ship cl
- Fuel cells & opt
- Hybrid power s
- Optimal lifetime
- Alternative fuel
- Shipping decarts
- Simulation plat
- System alternat
- Maritime Trans

SCIENTIFIC RESULTS 2021

HIGHLIGHTS

AND PROPULSION	34
rformance	35
aves	35
ships	36
AND FUELS	37
harging	38
timization of marine power plants	38
systems	39
e fuel and power system selection	40
ls	41
bonization scenarios	42
FORM	43
form updates	44
tives for modular, zero-emission high-	speed ferries 47
sport Environmental Assessment Mod	el 48

HYDRODYNAMICS & PROPULSION

Results 202

ANNUAL REPORT 2021

BW PAVILION LEEARA

Calm water performance

Friction Reduction – project RedRes

Contact: Kourosh Koushan, SINTEF Ocean, Project RedRes

The research project RedRes targets reduction of skin friction, which count for more than 70% of resistance of most ocean-going vessels. The project works on design and optimisation of the surface structure, and will test the developed surface structure on an ocean-going vessel.

Achievements 2021:

- Direct Numerical Simulations of laminar and transitional laminar-turbulent flow over one dimple, as well as over two different dimple patterns. DNS of laminar oscillatory flow over one dimple. Ready to start turbulent flow simulations in 2022.
- Model tests in the cavitation tunnel with different dimpled surfaces. Measurement of friction force using force cell and visualization of detailed flow.

Reference: Project RedRes - Reduction of ship emissions using innovative surface structures to reduce friction. 2020-2024 (RCN) SINTEF Ocean, NTNU, JOTUN, Grieg Star.

Operations in waves

Design Optimization for ships operating in real sea states

Contact: PhD Candidate Ehsan Esmalian (NTNU, WP2)

- Two first scientific papers submitted

Speed loss - Added resistance due to waves

Contact: Martin Gutsch (SINTEF Ocean), IPIRiS KSP Project, Duration 2020 – 2024

Ship performance monitoring using in-service measurements and big data analysis Contact: PhD Candidate Prateek Gupta (NTNU, WP2)

ANNUAL REPORT 2021

Explore using components and methods from Gymir and ShipX.

• Validation tests using the new standard ship model. Combined SINTEF and NTNU activity.

• Developed data-driven ship performance monitoring system using the in-service data recorded onboard the ships. Here, calibrated machine-learning models are used to predict the change in performance of a ship through propeller and hull cleaning events.

• Linear machine-learning methods, namely, PCR and PLSR, are shown to be producing comparable results with a well-established non-linear method, ANN, while modeling the hydrodynamic state of a ship using some simple non-linear transformations.

• A semi-automatic data processing framework is developed to process the data from a ship in-service for ship performance monitoring. Several common problems found in the data obtained from a ship in-service are discussed and solutions are suggested

Wind-powered ships

Hydrodynamics modelling of wind powered merchant vessels

Contact: PhD Candidate Jarle Kramer and Prof. Sverre Steen (NTNU, WP2) Four practical simplifications for modeling the hydrodynamic properties of a wind-powered cargo ship with CFD and a route simulation model is evaluated. We first test how much the drift-induced hull forces are dependent on Froude number, model scale, and heel angle. Then, we test the mathematical assumptions in the MMG maneuvering model, with particular focus on the rudder resistance as a function of drift angle, rudder angle and propeller thrust. The overall goal is to see if the hydrodynamics of the ship can be modeled with both a simplified CFD setup and a simplified route simulation model. For each tested simplification, we find that they can be used under specific conditions, but not always. We give specific recommendations based on our results. To improve the predicted rudder resistance from the MMG model, we suggest a slightly modified model based on classical lifting line theory. All the numerical experiments are performed using the open source CFD library OpenFOAM. The simulation setup is described, including details of the mesh design. The numerical uncertainty is quantified, and the simulations are compared against benchmark experiments.

Reference: Kramer, J. V., & Steen, S. (2022). Simplified test program for hydrodynamic CFD simulations of wind-powered cargo ships. Ocean Engineering, 244, 110297.

et al. 2021)

- A novel method to test wind-assisted ships in hydrodynamic laboratories is presented. The physical ship model, including propulsion units, interacts in realtime with a numerical sail model during free-running tests.
- The method is applied to investigate the benefits and limitations of wind-assistance on a 190 m bulk-carrier, equipped with four rotor sails.
- Key performance indicators are presented and analyzed for steady wind profiles with various directions and velocities.

Impact of wind propulsion on the propeller and power system

Contact: Postdoc Dražen Polić (NTNU, WP3)

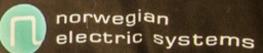
- \bullet

Hybrid testing techniques for wind-assisted propulsion (publication Sauder

Contact: Professor Thomas Sauder (NTNU)

Sauder, T., & Alterskjær, S. A. (2022). Hydrodynamic testing of wind-assisted cargo ships using a cyber-physical method. Ocean Engineering, 243, 110206.

• Performance of aerodynamic devices (sails/rotors), propeller and machinery Performance and velocity prediction program (PPP and VPP) –validation with existing hybrid test results published by SINTEF Ocean


POWER SYSTEMS AND FUELS

Results 2021

ANNUAL REPORT 2021

37

Power systems and fuel

Shore to ship charging systems

Contact: PhD Candidate, Siamak Karimi (NTNU, WP3)

- Reliability modelling and assessment of shore-to-ship charging systems: comparison of design scenarios.
- Review of technologies: onshore and offshore charging
- Established a novel power architecture as universal multi-vessel shore-to-ship charging system.

Publications:

S. Karimi, M. Zadeh, and J. A. Suul "Operation-based Reliability assessment of Shore-to-Ship Fast Charging Systems," 58th Industrial & Commercial Power Systems Technical Conference) (ICPS)

S. Karimi, "To-ship power transfer: concept, principle, topology," in SFI-Smart Maritime webinar, Oct., 2021.

S. Karimi, M. Zadeh and J. A. Suul, "A Multi-Layer Framework for Reliability Assessment of Shore-to-Ship Fast Charging System Design," in IEEE Transactions on Transportation Electrification , 2021.

Fuel cells & optimization of marine power plants

Contact: PhD Candidate Kamyar Maleki (NTNU, WP3)

- Bond Graph Approach for Modelling of Proton Exchange Membrane Fuel Cell System (Conference-Published)
- Dynamic Modelling of PEM Fuel Cell System for Simulation and Sizing of Marine Power Systems (Journal-Accepted)
- System-Level Modeling of Marine Power Plant with PEMFC System and Battery (Journalunder review)
- Developing C power plant

Publications:

Tavakoli, Sadi; Ma consumption and concept. Internat Malekibagheraba Modelling of Prot conference on bo ANNUAL REPORT 2021

Developing Co-Simulation approach for the vessel operation and the generic hybrid

Tavakoli, Sadi; Malekibagherabadi, Kamyar; Schramm, Jesper; Pedersen, Eilif. (2021) Fuel consumption and emission reduction of marine lean-burn gas engine employing a hybrid propulsion concept. International Journal of Engine Research.

Malekibagherabadi, Kamyar; Skjong, Stian; Pedersen, Eilif. (2021) Bond Graph Approach for Modelling of Proton Exchange Membrane Fuel Cell System. Proceedings of the 2021 international conference on bond graph modeling and simulation (ICBGM'2021).

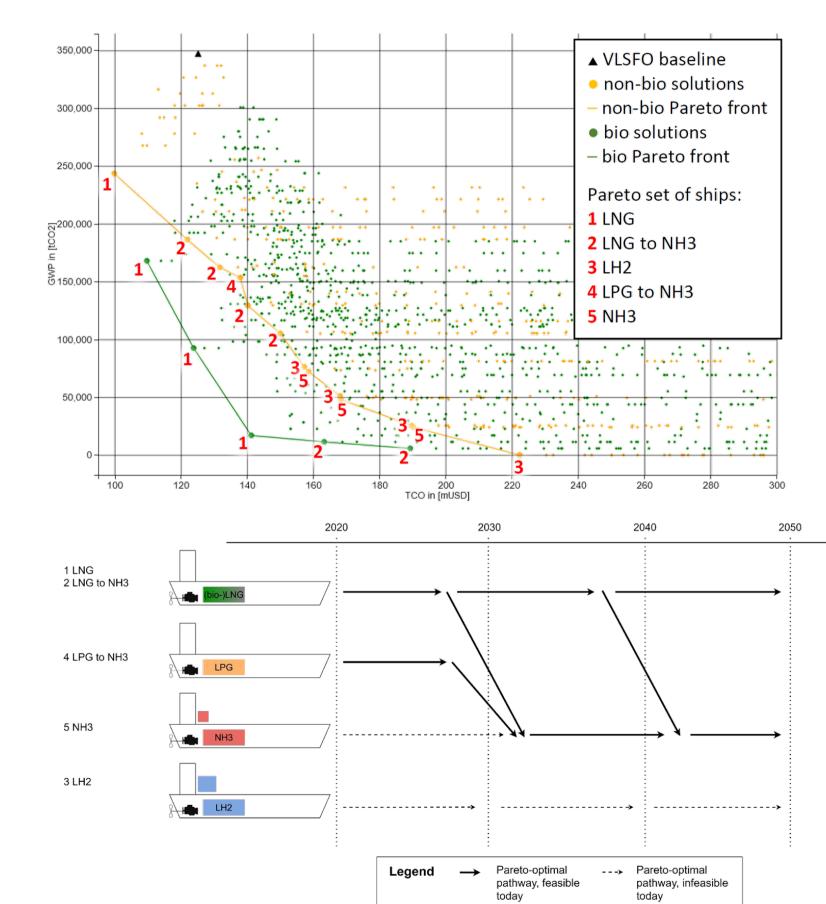
Hybrid Power systems

Hybrid Electric Power and Propulsion

Contact: PhD Canditate Marius Ulla Hatlehol (NTNU, WP3)

- Robust control for electric propulsion
- Power system modelling of selected case vessel with DC propulsion. A hybrid power system model consisting of a variable speed genset, a permanent magnet propulsion system, and an energy storage system is developed based on the port-Hamiltonian framework. The models have been used to study the dynamic interactions between the different components to identify root causes for instability.
- Review of hybrid power systems, electric propulsion.
- Review of Regenerative power / potential for heat recovery

Publications:


Zadeh, Mehdi; Yum, Kevin Koosup; Hatlehol, Marius Ulla. <u>Hybrid Power Systems</u>. SFI Smart Maritime Webinar; 2021-03-09

Webinar presentation: "Regenerative power / potential for heat recovery / hybrid cycle". Zadeh, Mehdi; Hatlehol, Marius Ulla; Gabrielii, Cecilia H. <u>Energy Efficiency Onboard</u>. SFI Smart Maritime Webinar; 2021-06-22

Paper "Super-Twisting Algorithm Second-Order Sliding Mode Control of a Bidirectional DC-to-DC Converter Supplying a Constant Power Load", submitted for the IFAC CAMS 2022 Conference.

Fuels and power systems

Optimal ship lifetime fuel and power system selection

Alternative fuels and fuel-flexible ships are often seen as promising solutions for achieving significant greenhouse gas reductions in shipping. We formulate the selection of alternative fuels and corresponding ship power systems as a bi-objective integer optimization problem. We apply our model to a Supramax Dry-bulker and solve it for a lower bound price scenario including a carbon tax. Within this setting, the question whether bio-fuels will be available to shipping has significant effect on the lifetime costs. For the given scenario and case study ship, our model identifies LNG as a robust power system choice today for a broad range of GHG reduction ambitions. For high GHG reduction ambitions, a retrofit to ammonia, produced from renewable electricity, appears to be the most cost-effective option. While these findings are case-specific, the model may be applied to a broad range of cargo ships.

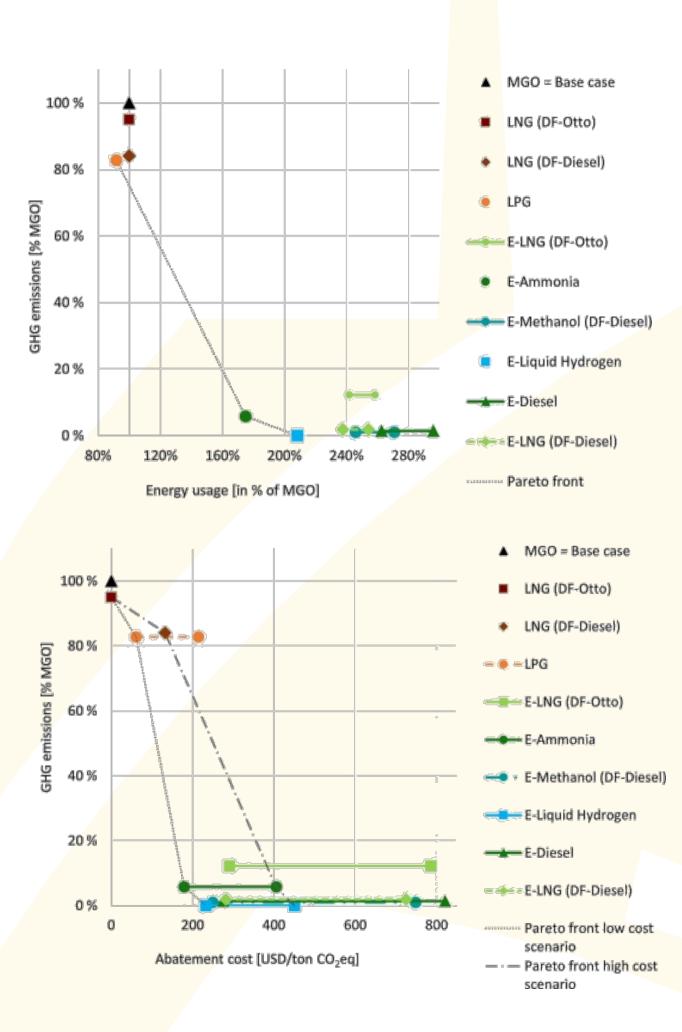
Case:

Reference: Lagemann, B., Lindstad, E., Fagerholt, K., Rialland, A., & Erikstad, S. O. (2022). Optimal ship lifetime fuel and power system selection. Transportation Research Part D: Transport and Environment, 102, 103145.

Contact: PhD Candidate Benjamin Lagemann (NTNU, WP4)

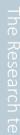
Supramax bulk carrier Power system options: VLSFO, LNG, LH2, NH3, LPG, Methanol Newbuild & retrofit costs

Fuels and power systems


The potential role of E-fuels

Contact: Elizabeth Lindstad (SINTEF Ocean, WP1)

- Zero carbon fuels made from renewable sources (hydro, wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions.
 Fthe study evaluates Well-to-Wake GHG emissions, energy use and lifecycle cost for E-fuels (E-Hydrogen, E-Ammonia, E-Diesel, E-LNG, E-Methanol).
- The results indicate dual-fuel engines and systems as the most robust path to these alternative fuels, to ensure flexibility in fuel selection, prepare for growing supplies and reduce risks.
- E-fuels will double or triple the maritime sector's energy consumption Well-to-Wake.
- The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity.
- A narrow, maritime focus is counter-productive to a global decarbonization strategy.


Publications:

Lindstad, E.; Lagemann, B.; Rialland, A.; Gamlem, G. M. & Valland, A. (2021). <u>Reduction of</u> <u>maritime GHG emissions and the potential role of E-fuels</u>. Transportation Research Part D: Transport and Environment, 101, 103075.

Shipping decarbonization scenarios

Contact: Agathe Rialland & Elizabeth Lindstad (SINTEF Ocean, WP1)

- Shipping largest contribution to reaching net zero will be on improving energy efficiency through technical, design and operational measures.
- The present study demonstrates that even fundamentally different solutions pathways contribute to significant GHG reduction.
- No matter which technology path for decarbonizing shipping is considered, energy use Well-to-Wake should not be neglected.
- The options for nearly zero-GHG fuels are either a total shift to new fuel types and power systems (hydrogen/ammonia) or synthetic E-fuels. The latter only affects costs and is hence the *Easy-way* from a shipping industry perspective.
- It is necessary to acknowledge that the maritime industry is embedded in a global energy production-consumption system to avoid the shift of responsibility from one industry to another.
- The *Wind-ship* and *Efficient-transition* illustrate paths in which the shipping industry take the lead and responsibility.
- In contrast, in the *Hydrogen & Ammonia* and *Easy-way* scenarios, the shipping industry depends very much on the energy sector's ability to produce enough new renewable energy.
- The scenarios demonstrate the importance of adopting a broad view on technology and strategy development, to understand the potential of distinct GHG reduction measures, and how distinct technologies and measures can work together.

Publications:

Rialland, A., Lindstad, E., 2021 Shipping decarbonization scenarios. 29th Conference of the International Association of Maritime Economists. 25 – 27. November 2021, Rotterdam.

ANNUAL REPORT 2021

FUELS & POWER SYSTEMS (carbon efficiency)

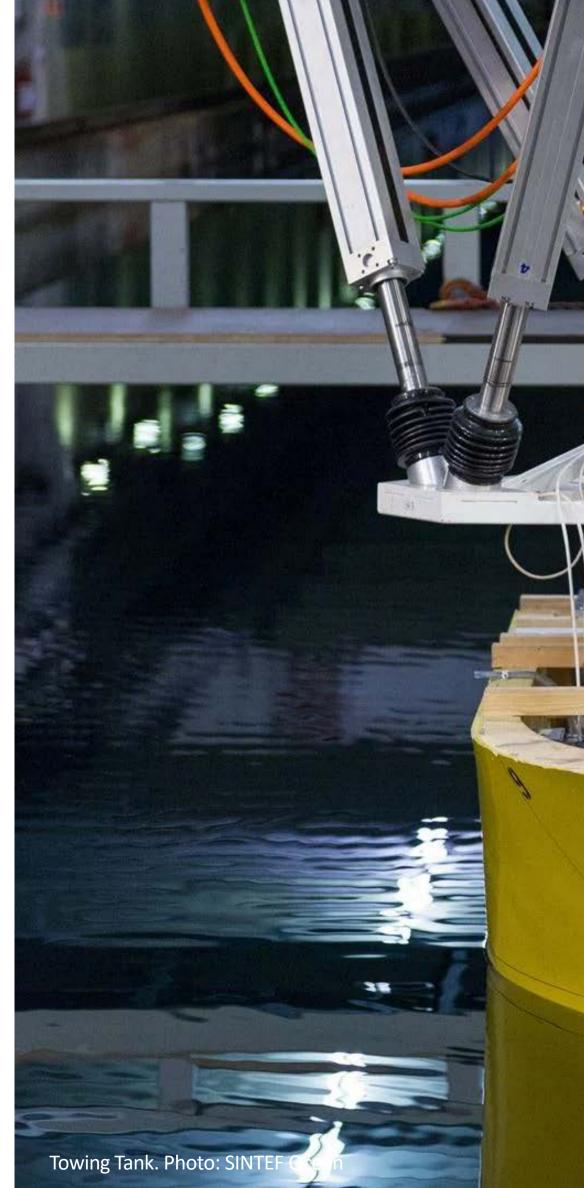
Challenging & Unconventional Low Carbon fuels

Hydrogen & Ammonia Newbuild / new power system & tank

Traditional designs with energy saving devices

The Easy-way Conventional vessels running on drop-in fuels (Biodiesel, E-Diesel, E-LNG)

Low carbon fuels that can be blended with conventional fuels

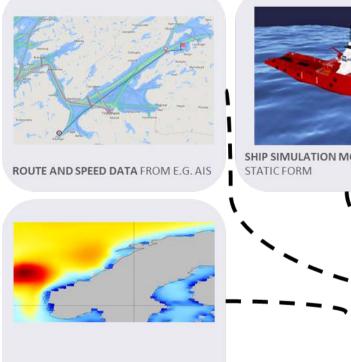

Efficient-transition Newbuild / slender hull / LNG or LPG

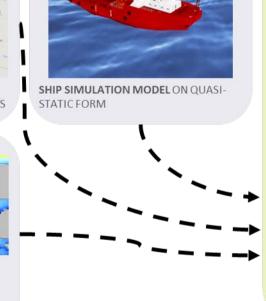
Innovative designs to reduce energy consumption

Wind-ship Newbuild / slender hull form / designed for windassisted propulsion SHIP DESIGN & PROPULSION SYSTEMS (energy efficiency)

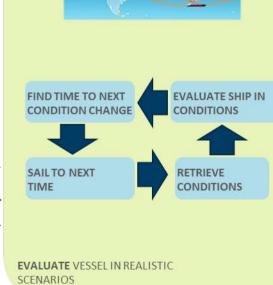
SIMULATION PLATFORM

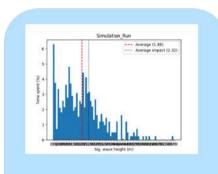
Results 2021





GYMIR UPDATES


Contact: Jon S. Dæhlen (SINTEF Ocean, WP4)


Gymir plugin for ShipX

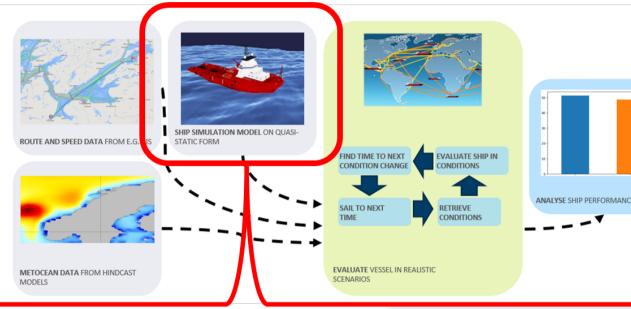
ANALYSE SHIP PERFORMANCE

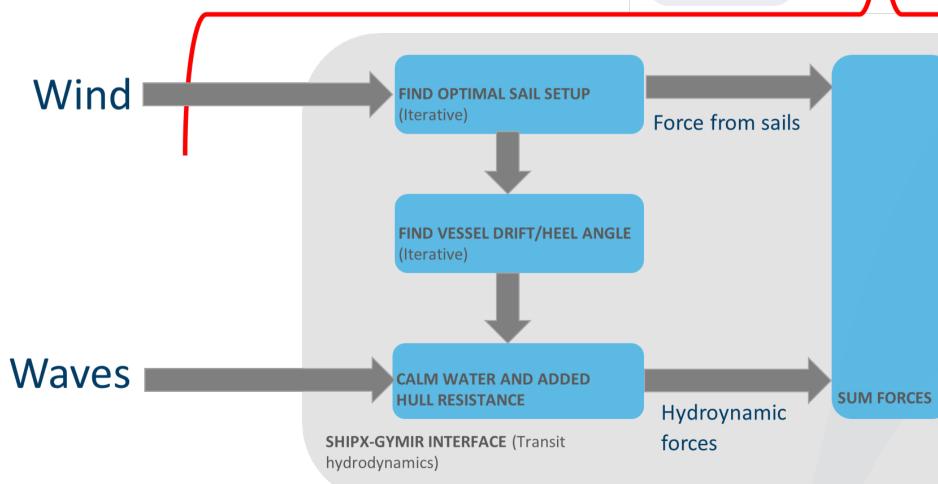
Reference: Dæhlen, Jon. SFI Simulation Platform: latest developments. SFI Smart Maritime WEBINAR Simulation Platforms; 2020-10-09

ANNUAL REPORT 2021

Cloud-based simulation

- Gymir simulation engine
- Ship model database
- Weather retrieval directly from weather service provider's servers using OpenDAP
- Animation of simulation
- Post processing of simulation results lacksquare





Wind-assisted propulsion in Gymir

Contact: Jon S. Dæhlen (SINTEF Ocean, WP4) and Anders Östman, project CruiZero

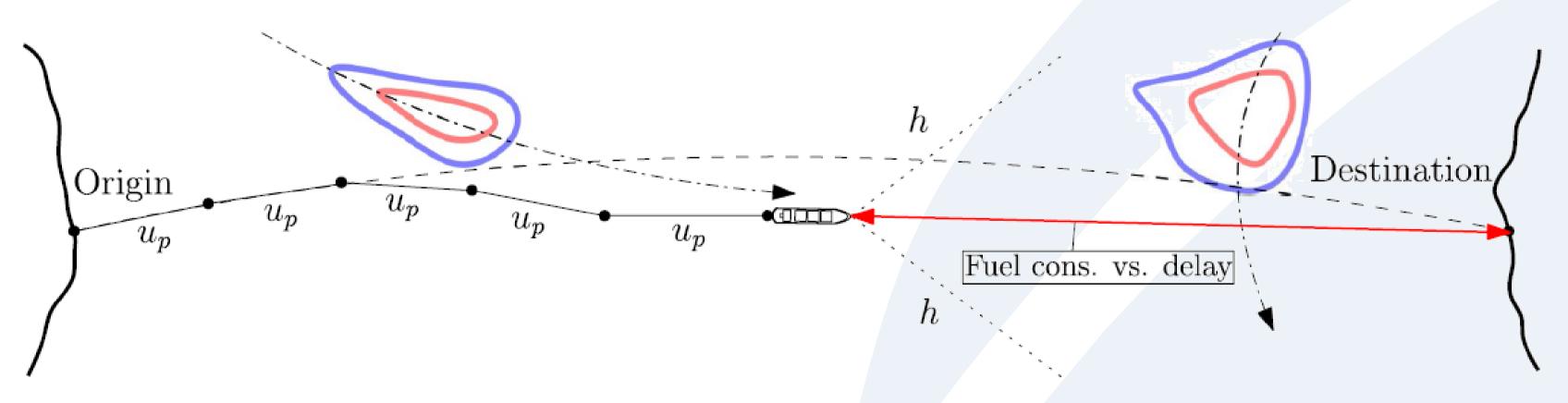
Introduction of flettner rotor and wing-sail as a contributor to propulsion in ShipX and Gymir-plugin

ANNUAL REPORT 2021

Propulsion force required

FIND PROPULSION POINT (Iterative)

Required machinery power



"Virtual Captain": Active route and speed decisions in Gymir

Contact: Jon S. Dæhlen and Endre Sandvik (SINTEF Ocean, WP4)

Goal: more realistic evaluation of unproven technology by active route and speed decisions in simulation.

Implement strategy developed in Smart Maritime PhD project Simulation-based design (E. Sandvik, WP4).

References:

Dæhlen, Jon. SFI Simulation Platform: latest developments. SFI Smart Maritime WEBINAR Simulation Platforms; 2020-10-09 Sandvik et al. (2020) Operational sea passage scenario generation for virtual testing of ships using an optimization for simulation approach, J. Marine Science and Technology, pp.1-21.

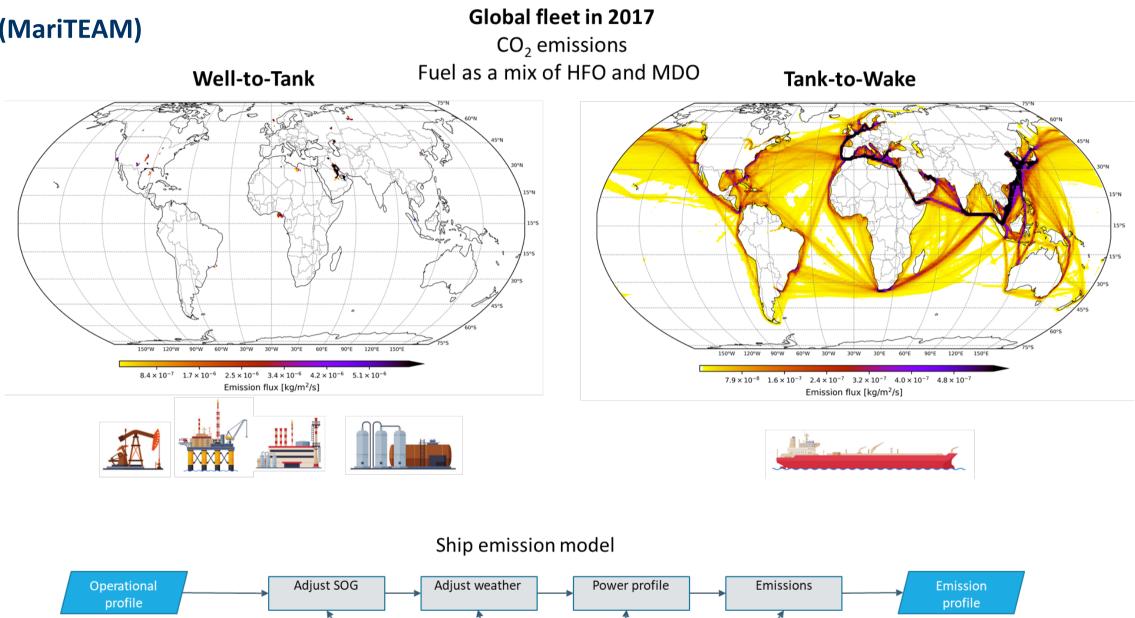
System alternatives for modular, zero-emission high-speed ferries

Contact: PhD Candidate Benjamin Lagemann (NTNU, WP4)

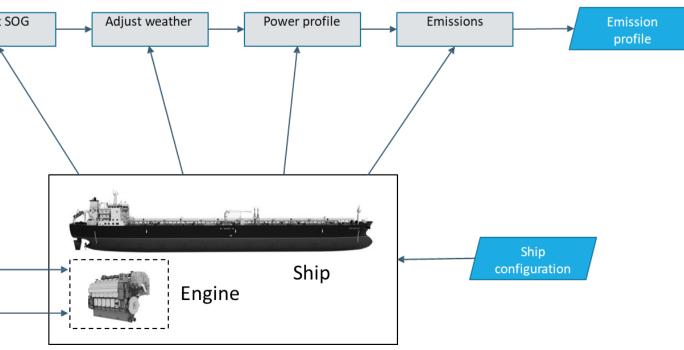
Low emission requirements exert increasing influence upon ship design. The large variety of technological options makes selecting systems during the conceptual design phase a difficult endeavor. To compare different solutions, we need to be able to exchange individual systems and directly evaluate their impact on the design's economic and environmental performance. Based on the idea of model-based systems engineering, we present a modular synthesis approach for ship systems. The modules are coupled to a discrete event simulation and allow for a case-based assessment of system configurations. We apply this method to a high-speed passenger ferry and show how it can provide decision support for hydrogen- and battery-based system architectures.

Reference:

Lagemann, B.; Seidenberg, T.; Jürgenhake, C.; Erikstad, S. O. & Dumitrescu, R. (2021). System alternatives for modular, zero-emission high-speed ferries. SNAME International Conference on Fast Sea Transportation, doi.org/10.5957/FAST-2021-054


MARITIME TRANSPORT ENVIRONMENTAL ASSESSMENT MODEL (MariTEAM)

Contact: Helene Muri (NTNU)


MariTEAM model development

Fleet level emission assessment

- Fleet stock scenario model
- Geospatial LCA and climate footprint of fuels Fleet emission inventory
- Ship level assessment
- Battery electric ferry case. •
- Evaluation of power prediction models lacksquare

COOPERATION

COOPERATION INDUSTRY - RESEARCH - ACADEMIA

Smart Maritime enjoys a network of highly motivated industry representatives, striving for knowledge and excellence. The participation of maritime professionals in research is crucial for the good progress of our projects.

Industry participation includes the following:

- Sharing of operational data \bullet
- Measurement and test experiments ۲
- Laboratory or test ship for research ۲
- Direct involvement in research work \bullet
- Cooperation on model and tool development
- Participation at workshops and webinars \bullet
- Scientific discussion, knowledge sharing
- Associated and spin-off projects
- Co-supervision / support to Master theses
- Dissemination, co-authorship

ANNUAL REPORT 2021

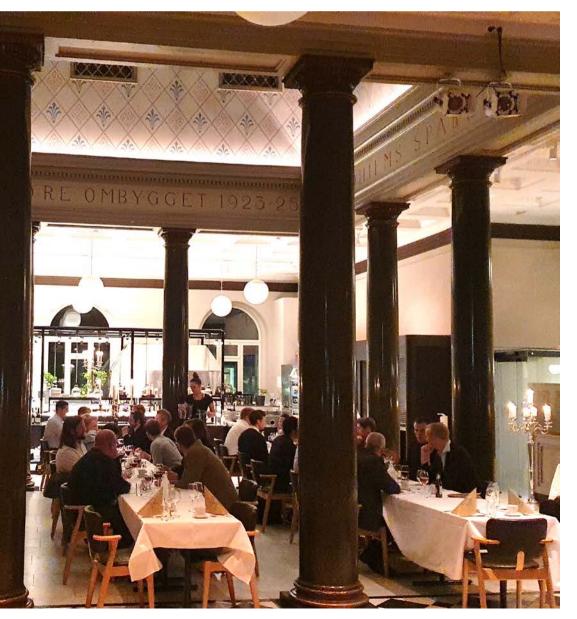
114

NETWORK MEETINGS 2021

The research team and the Technical Advisory Committee gather at bi-annual network meetings to exchange ideas and experience, keep updated on scientific progress, discuss new challenges and new reseach and innovation initiatives.

In 2021, the network could finally meet in person after 3 consecutive digital events.

04 MAY 2021 Dialog on new research and innovation initiatives Online - Participants: 45

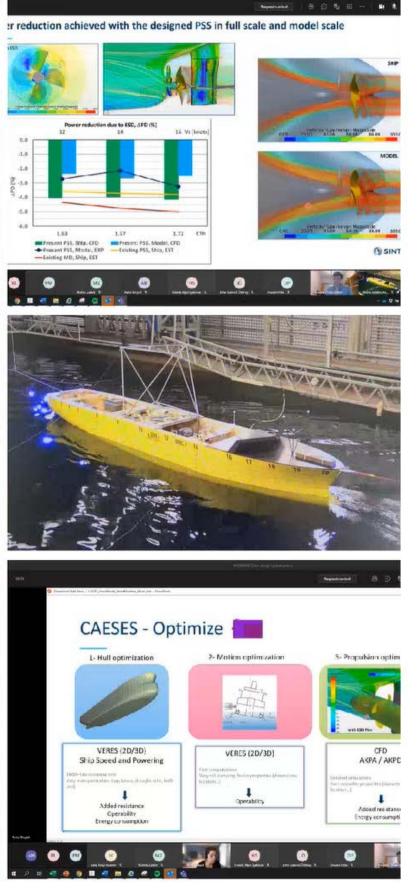

> **9-10 NOVEMBER 2021** Planning of 2021 activities **Trondheim** - Participants: 50

ANNUAL REPORT 2021

Pictures: Trondheim, 8-9 Nov 2021 - Kvilhaugen Gård. - Banksalen.

SMART MARITIME	SINTEF ONTOU VARTSILA VARTSILA VARTSILA	SEN Jour Wallenius Wilhelmsen Ocean	ANNUAL REPC
NEBINARS 2020	KONGSBERG O	DFJELL	
Online seminars and lectures are offered to the	Centre	autoliners Torvald Claveness	
members for providing update on ongoing resea			
maintain scientific discussion with industry partne	ers.		
Торіс	Presenters	Date	Participants
Carbon Intensity Indicator	SINTEF Ocean, Klaveness: E. Lindstad, M. Wattum	Jan. 21	#43
Maritime emissions estimation model (W/ CLIMMS)	NTNU: D. Kramel, H. Muri, Prof. A.H. Strømman	Feb. 16	#43
Hybrid Power Systems	NTNU, SINTEF Ocean: Prof M. Zadeh, K. K. Yum, M. U. Hatlehol	Mar. 9	#49
Maritime Policy updates	SINTEF Ocean: E. Lindstad	Mar. 23	#35
Big data application in the maritime sector	NTNU: Prof S. Steen, P. Gupta, YoungRong Kim	Apr. 20	#54
Ship design optimization – live from towing tank	SINTEF Ocean: S. A. Alterskjær, T. Sauder, A. Bruyat, V. Krasilnikov	Apr. 27	#41
Håndtering av skip i dårlig vær	Kompetanseforum for krevende fartøysoperasjoner	Jun. 2	
Energy Efficiency on-board	NTNU, SINTEF Energy: Prof M. Zadeh, M. U. Hatlehol, C. Gabriellii	Jun. 22	#50
Alternative fuels	SINTEF Ocean: E. Lindstad	Sept. 16	#38
To-ship power transfer for sustainable propulsion	NTNU, SINTEF Energy: Prof M. Zadeh, S. Karimi, J. Suul	Oct. 7	#45
Simulation platform - Gymir-ShipX plug-in release	SINTEF Ocean, NTNU: J.S. Dæhlen, B. Lagemann	Oct. 29	#48
CLIMMS - Reducing Maritime GHG Emissions	NTNU Indecol, SINTEF Ocean	Nov. 19	

Interactive webinar


Webinar on Ship Design Optimization, with live demo from the SINTEF Ocean Towing tank. The meeting presented the concept and design of the SINTEF Ocean Bulk Carrier (SOBC-1), and ongoing work on simulation-driven design approach, to conclude with presentation of model experiments with wind assisted SOBC-1, live from the SINTEF Ocean's Towing Tank.

Presenters: Anders Alterskjær, Vladimir Krasilnikov, Anne Bruyat, Thomas Sauder.

Pictures: Screenshots from Webinar 27-04-2021

NATIONAL COOPERATION

National research and expertise centres

Cooperation on simulation methods and tools among SFI Smart Maritime, MOVE, EXPOSED, and newly launched SFI Autoship.

Strategic research collaboration agreement through GEMINI-centre for maritime logistics (SINTEF/NTNU 2018-2022)

Low-emission research centre: Cross-disciplinary cooperation on case study of offshore supply with emission-free fuels, including integration of optimization and simulation models.

Smart Maritime is represented in

- NCE Maritime CleanTech
- Grønnkystfartprogram
- Kompetanseforum for krevende marinoperasjoner

University collaboration

Spin-off and associated projects

New opportunities are explored every year by partners of Smart Maritime for further research or commercialisation activity.

In 2021, based on active collaboration among the Centre partners, 6 new collaboration projects were launched.

NHH. Norwegian School of Economics. Collaboration with Centre for Applied Research at SNF (Samfunns- og næringslivsforskning) on maritime economics.

INTERNATIONAL COOPERATION

EU's framework programme

Several of the Centre's industry partner are involved in at least one EU project on similar topics as Smart Maritime. Per 2020, SINTEF Ocean and Smart Maritime partners were involved in 5 H2020 projects with high relevance and synergy with Smart Maritime in terms of scientific activity or industrial challenges; 3 of these were launched in 2020.

Academic and research cooperation

- Scientific advisory committee, consisting of 5 Professors with expertise covering research area of the Centre. Chalmers University (SE), U. Strathclyde (UK), DTU (DK), TU Hamburg (GE)
- Cross-university PhD program (Cotutelle) NTNU / DTU Denmark.
- Cooperation with Chalmers University of Technology, Sweden on fouling and anti-fouling for reduction of friction.
- Cooperation with UC Berkeley on utilization of super-hydrophobic surfaces and flow separation detection and control (partly financed by a Peder Saether Grant).
- KEDGE Business School (FR) and KLU Kühne Logistics University (GE) on maritime economic studies.
- Aalborg university: cooperation on shore-side power supply.

International cooperation on policy development

- IPCC International Panel on Climate Change: Prof. A. H. Strømman and Dr. Helene Muri (NTNU) designated as co-author for the IPCC's Sixth Assessment Report.
- ESSF: European Shipping Sustainability Forum: Chief-scientist Elizabeth Lindstad expert advisor, contributor and task-lead for working groups: Alternative Fuels and Ship Energy Efficiency, coordinating submissions to IMO and ISO.
- Dr. Lindstad, one of three external experts in BIMCO's WG on Alternative Fuels which started autumn 2021
- IMO / MEPC: SFI Smart Maritime participants are actively involved in IMO consultations, either through Norwegian delegation or international forums and industrial initiatives.
- UNCTAD: contribution to UNCTAD expert assessment for IMO.
- MAREFORUM. Dr. Lindstad regular panel speak at one of the most global and influential forums for the maritime and shipping industry.
- SNAME fellowship attributed to Dr Elizabeth Lindstad in 2017
- WSA Wind Ship Association: SINTEF Ocean associated member
- ITTC Technical committee member

ASSOCIATED PROJECTS

Project title	Period	Funding
HOLISHIP - HOLIstic optimisation of SHIP design and operation for life cycle	(2016-2020)	EU H2020
Hybrid testing - Real-Time Hybrid Model Testing	(2016-2020)	MAROFF, KPN
SATS - Analytics for ship performance monitoring in autonomous vessel	(2018-2020)	MAROFF, KPN
Open simulation platform	(2018-2020)	JIP
Digital twin for lifecycle operations	(2018-2022)	MAROFF
CLIMMS - Climate change mitigation in the maritime sector	(2019-2023)	MAROFF, KPN
SmartShipRouting	(2019-2021)	MAROFF, IPN
RuteSim: Simuleringsbasert Ruteplanlegging	(2019-2020)	MAROFF, IPN
Digital twin yard	(2019-2021)	MAROFF, IPN
FreeCO2ast	(2019-2022)	PILOT E
Extension of Hybrid Lab	(2019-2019)	ABB
Autoship	(2019-2022)	EU H2020
RedRes - Innovative surface structures to reduce friction	(2020-2023)	MAROFF, KPN
IPIRIS - Improving Performance in Real Sea	(2020-2023)	MAROFF, KPN
CruiseZero – Zero-emission expedition cruise	(2020-2022)	MAROFF, IPN
PEZOS - Plug-In Electric Zero-emission Offshore-ship	(2020-2022)	MAROFF, IPN
Bio4-7seas - Biofuels in deep sea shipping for climate change mitigation	(2020-2023)	ENERGIX, KPN
ZeroCoaster - Zero-emission coastal bulk shipping	(2020-2022)	MAROFF, IPN
Air-lubrication	(2020-2022)	MAROFF, IPN
Gaters	(2020-2022)	EU H2020
Aegis	(2020-2023)	EU H2020
VesselAI	(2021-2024)	EU H2020
CCShip – Carbon Capture and Storage onboard ships	(2021-2024)	MAROFF, KSP
AMAZE - Ammonia zero emission	(2021-2023)	MAROFF, IPN
SEA-Co - Safer, easier and more accurate Co-simulations	(2021-2025)	MAROFF, KSP
ISTS - Intelligent ship transport systems	(2021-2024)	MAROFF, KSP
ZeroKyst – Decarbonization of ships for seafood sector	(2021-2024)	Green Platform
ProfSea - Ship Operational Performance in Following Sea	(2021-2024)	NFR, KSP
Ecorouter - Route optimization integrating low-carbon technologies	(2022-2024)	MAROFF, IPN

ANNUAL REPORT 2021

Smart Maritime Partners
Kongsberg Maritime, DNVGL, SINTEF
NTNU, SINTEF
NTNU, SINTEF
DNV GL, Kongsberg Maritime, SINTEF, NTNU
DNV GL, Kongsberg Maritime, SINTEF, NTNU
NTNU, SINTEF, Rederiforbund + all 8 ship owners SFI-partners
NCS, NES, Havila, Havyard, SINTEF
Grieg Star, WWO, KGJS, SINTEF, Nansen
DNVGL, Rolls-Royce, NTNU, SINTEF
Havyard, Havila, SINTEF
ABB, SINTEF
Kongsberg, SINTEF
JOTUN, SINTEF, NTNTU, Grieg Star
VARD, Havyard, Kongsberg, SINTEF, NTNU
VARD, ABB, SINTEF
VARD, SINTEF
NTNU, SINTEF
VARD, ABB, DNV GL, SINTEF
Jotun, SINTEF
Strathclyde, SINTEF
SINTEF
Kongsberg, SINTEF
Klaveness, Wärtsila, NCCS, Calix, SINTEF, NTNU
Bergen Engines, SINTEF, NTNU
DNV, Kongsberg, SINTEF, NTNU
SINTEF, Kongsberg, DNV, Grieg, Kystverket, Sjøfartsdirektoratet
Siemens, SINTEF, NTNU
Kongsberg, SINTEF, NTNU
KCIC OCNA Odfiell

KGJS, OSM, Odfjell

INDUSTRIAL INNOVATION

Skal løse skipsfartens klimagassproblem med multifuel brenselcelle

Rederiet Odfjell satser ikke alt på en hest i kappløpet for å nå nullutslipps shipping. Tester brenselcelle som kan gå på alt fra LNG med karbonfangst til ammoniakk og hydrogen.

Norges mål om å redusere utslipp fra skipsfarten med 50 prosent innen 2030, betyr at det må bygges minst 400 utslippsfrie skip til nærskipsfart og 700 lavutslippsskip. Zerocoaster kan være løsningen.

Source: Teknisk Ukeblad

ANNUAL REPORT 2021

Solvang-skip får karbonfangst og lagring om bord

Rederiet Solvang skal i 2023 montere et CCS-anlegg om bord på etylenskipet Clipper Eos. Det blir verdens første anlegg for karbonfangst og lagring på et skip.

THE RESEARCH TEAM

Smart Maritime's research team consists of 30 research scientists from two institutions NTNU and SINTEF Ocean.

The Centre has so far financed 13 PhD students and 4 Postdoc researchers.

PHD STUDENTS AND POSTDOCTORAL RESEARCHERS - 2021

Name	Nationality	Period	Торіс	Supervisor
Postdoctoral researc	hers SFI Smart	Maritime		
Dražen Polić	HR	2020-2022	Impact of wind propulsion on the propeller and power system. (WP3)	Prof. Eilif Pedersen, NTNU
PhD students SFI Sm	art Maritime -	WP3 Power systems and	l fuels	
Prateek Gupta	IN	2018–2022	Ship performance monitoring using in-service measurements and big data analysis meth	
Ehsan Esmailian	IR	2019-2022	Optimization of ships for operation in real sea states	Prof. Sverre Steen, NTNU
Jarle Kramer	NO	2020-2022	Hydrodynamic modelling of wind-powered merchant vessels	
PhD students SFI Sm	art Maritime -	WP3 Power systems and	l fuels	
Kamyar Maleki	IR	2019-2022	A Simulator Approach to Concept Analysis and Optimization of marine Power Plants	
Yuan Tian	CN	2020-2023	Modelling and simulation of ship exhaust gas cleaning system	Prof. Eilif Pedersen, NTNU
Siamak Karimi	IR	2019-2022	Modelling and optimal design of marine hybrid electric power systems	
Marius Ulla Hatlehol	NO	2021-2024	Modelling, Design and Control of Hybrid Electric Power and Propulsion	Prof. Mehdi Zadeh, NTNU
PhD students SFI Sm	art Maritime -	WP4 Ship System Integro	ation and Validation	
Benjamin Lagemann	GE	2019-2022	Concept Ship Design for Future Low-Emission Shipping Technology Prof. Stein-Ove Eriksta	ad, NTNU
Funding from other so	ources			
Diogo Kramel	BR	2019-2022	LCA marine fuels	
YoungRong Kim	СН	2019-2022	Efficient fleetwide modelling	

Prateek Gupta

Ehsan Esmalian

Kamyar Maleki

Siamak Karimi

ANNUAL REPORT 2021

Marius Ulla Hatlehol

Yuan Tian

Benjamin Lagemann

Jarle Kramer

RESEARCH TEAM - SINTEF OCEAN

S. Anders Alterskjær

Pierre-Yves Henry

Anne Bruyat

Fengjian Jiang

Trond Johnsen

Ulrik Jørgensen

Torstein Ingerbrigtsen Bø Jon Schonhovd Dæhlen Gunnar Malm Gamlem Martin Friedwart Gutsch

Kourosh Koushan

Thomas Sauder

Ruben A.I. Kristiansen Marius Indbryn Krogseng

Luca Savio

Elizabeth Lindstad

Renato Skejic

Jørgen Nielsen

Dag Stenersen

Agathe Rialland

ANNUAL REPORT 2021

RESEARCH TEAM - NTNU

Bjørn Egil Asbjørnslett

Stein Ove Erikstad

Helene Muri

Kevin Koosup Yum

Eilif Pedersen

Sverre Steen

Anders H. Strømman

Endre Sandvik

Anders L. Östman

Vilmar Æsøy

Mehdi Zadeh

RESEARCH TEAM

Name	Institution	Main research area	Name	Institution	Main research area
S. Anders Alterskjær	SINTEF Ocean	Hull and propeller hydrodynamics	Agathe Rialland	SINTEF Ocean	Feasibility studies
Anne Bruyat	SINTEF Ocean	Numerical Hydrodynamics	Endre Sandvik	SINTEF Ocean	Simulering
Torstein Ingebriktsen Bø	SINTEF Ocean	Marine hybride systemer	Thomas Michel Sauder	SINTEF Ocean/NTNU	Marine hydrodynamics and cybernetic
Jon Dæhlen	SINTEF Ocean	Data simulations and optimizing	Luca Savio	SINTEF Ocean/NTNU	Marine Hydrodynamics
Gunnar Malm Gamlem	SINTEF Ocean	Energy systems	Renato Skejic	SINTEF Ocean	Marine Engineering
Martin Friedwart Gutsch	SINTEF Ocean	Ships and Ocean Structures	Dag Stenersen	SINTEF Ocean	Hybrid propulsion
Pierre-Yves Henry	SINTEF Ocean	Ships and Ocean Structures	Anders Valland	SINTEF Ocean	Hybrid propulsion
Fengjian Jiang	SINTEF Ocean	Ships and Ocean Structures	Anders L. Östman	SINTEF Ocean	Marine hydrodynamics
Trond Johnsen	SINTEF Ocean	Data simulations and optimization	Henning Borgen	SINTEF Ålesund	Virtual ship design
Ulrik Jørgensen	SINTEF Ocean	Simulations and programming	Bjørn Egil Asbjørnslett	NTNU	Feasibility studies
Kourosh Koushan	SINTEF Ocean	Hull and propeller hydrodynamics	Stein Ove Erikstad	NTNU	Data simulations and optimization
Kevin Koosup Yum	SINTEF Ocean	Simulation, Machinery	Anders Strømman	NTNU	Environmental assessment
Ruben A.I. Kristiansen	SINTEF Ocean	Ships and Ocean Structures	Helene Muri	NTNU	Environmental assessment
Marius Indbryn Krogseng	SINTEF Ocean	Ships and Ocean Structures	Eilif Pedersen	NTNU	Power systems and fuel
Elizabeth Lindstad	SINTEF Ocean	Feasibility studies	Sverre Steen	NTNU	Hull and propeller hydrodynamics
Jørgen Nielsen	SINTEF Ocean	System simulation	Mehdi Zadeh	NTNU	Marine Hybrid Power Systems
		· · ·	Vilmar Æsøy	NTNU Ålesund	Power systems and fuel

TECHNICAL ADVISORY COMMITTEE

ABB Jan-Fredrik Hansen

Bergen Engines Leif Arne Skarbø

BW LNG Olav Lyngstad

DNV Hendrik Brinks

Höeh Autoliners Henrik Andersson

The Research team

KG Jebsen Skipsrederi Jan Berntzen

Sjøfartsdirektoratet Kolbjørn Berge

Kystrederiene Tor Arne Borge

Solvang Tor Øyvind Ask

Kongsberg Maritime Sverre Torben

Torvald Klaveness Martin Wattum

Grieg Star Jan Øivind Svardal

HAV design Kristian Voksøy Steinsvik

Jotun Angelika Brink

Odfjell Veine Huth

VARD Design Ove Bjørneseth

Norwegian Electric Systems Ole Georg Rørhus

Wallenius Wilhelmsen Lars Dessen

Norges Rederiforbund Jahn Viggo Rønningen

Wärtsilä Moss Sigurd Jenssen

INDUSTRY NETWORK

ABB	Bergen Engines	BW	DNV GL	Grieg Star	HAV De	esign Höegh Autoliner	rs Klaveness
Jan-Fredrik Hansen* Espen-Stubberod Olsen	Jan Eikefet Leif Arne Skarbø* Matthew Bloss	Olav Lyngstad*	Hendrik Brinks* Hans Anton Tvete	Roar Faneb Silje Monsla Jan Øivind Sva John Gabriel Ö	aup Kay Lo ardal* Arve Neo	orgen Sondre Nilsen dreberg Thea Valvatne Osnes re Moe Steinsvik*	Audun Eriksen
Jotun K	Kristian Gerhard Jebs	en Skipsrederi	Kystrederien	e Norweg	ian Electric Systems	Odfjell	Kongsberg Maritime
Angelika Brink* Manolis Levantis Stein Kjølberg	Jan Berntze Ole-Johan Haal Øyvind Mon Stein Håvard Su	hjem* sen	Tor Arne Borge	e* Ole-0	Georg Rørhus*	Veine Huth * Vegard Marken	Martijn de Jongh Markus Heimdal Hans Martin Hjørungnes Bjørn-Erik Osmark Harald Myrlund Sverre Torben* Bjørnar Vik
Norges Rederiforbund	Siemens En	ergy Sjøt	fartsdirektoratet	Solvang	Vard Design	Wallenius Wilhelmsen	Wärtsilä Moss
Jahn Viggo Rønninger	n* Lars Barst Tor Ove Hau Vemund Kår Mona Khora	ugan rstad asani	Kolbjørn Berge*	Tor Øyvind Ask*	Ole Bjørneseth* Andreas Buskop Tim Mak Kjell Morten Urke	Lars Dessen* Sergey Ushakov	Jan Gannefors Sigurd Jenssen* Sergio R. Palencia

ABB	Bergen Engines	BW	DNV GL	Grieg Star	HAV De	esign Höegh Autoliner	s Klaveness
Jan-Fredrik Hansen* Espen-Stubberod Olsen	Jan Eikefet Leif Arne Skarbø* Matthew Bloss	Olav Lyngstad*	Hendrik Brinks* Hans Anton Tvete	Roar Faneb Silje Monsl Jan Øivind Sva John Gabriel Ö	aup Kay Lo ardal* Arve Nec	rgen Sondre Nilsen dreberg Thea Valvatne Osnes re Moe Steinsvik*	Andreas Haavik Audun Eriksen Ernst André Meyer Anders M. Sorheim Martin Wattum *
Jotun k	Kristian Gerhard Jebse	en Skipsrederi	Kystrederier	e Norweg	ian Electric Systems	Odfjell	Kongsberg Maritime
Angelika Brink* Manolis Levantis Stein Kjølberg	Jan Berntze Ole-Johan Haah Øyvind Mons Stein Håvard Sur	njem* sen	Tor Arne Borg	e* Ole-(Georg Rørhus*	Veine Huth * Vegard Marken	Martijn de Jongh Markus Heimdal Hans Martin Hjørungnes Bjørn-Erik Osmark Harald Myrlund Sverre Torben* Bjørnar Vik
Norges Rederiforbund	d Siemens Ene	ergy Sjø	fartsdirektoratet	Solvang	Vard Design	Wallenius Wilhelmsen	Wärtsilä Moss
Jahn Viggo Rønninger	n* Lars Barsta Tor Ove Hau Vemund Kårs Mona Khora	igan stad	Kolbjørn Berge*	Tor Øyvind Ask*	Ole Bjørneseth* Andreas Buskop Tim Mak Kiell Morten Urke	Lars Dessen* Sergey Ushakov	Jan Gannefors Sigurd Jenssen* Sergio R. Palencia

Norges Rederiforbund	Siemens Energy	Sjøfartsdirektoratet	Solvang	Va
Jahn Viggo Rønningen*	Lars Barstad Tor Ove Haugan Vemund Kårstad Mona Khorasani Odd Moen* Kenneth P. Tjong Stig-Olav Settemsdal	Kolbjørn Berge*	Tor Øyvind Ask*	Ole And Kjell

* Primary contacts

COMMUNICATION AND DISSEMINATION

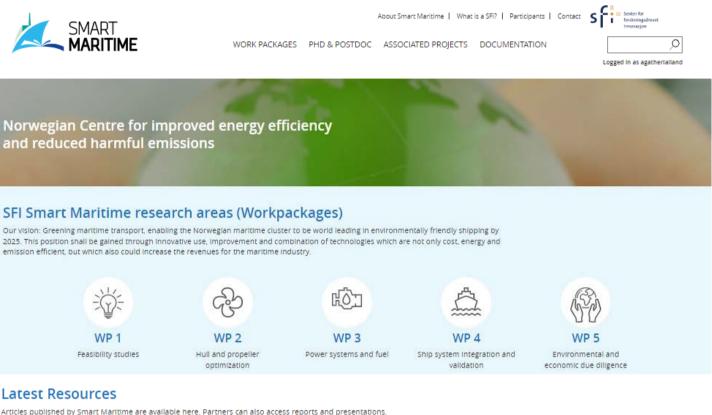
COMMUNICATION

Priority is given to communication towards the Centre's industry partners, Technical Advisory Committee and Board, to ensure good dialog with the core research team and involvement in research projects.

Our main communication channels are:

Website

www.smartmaritime.no contains *public information* about the Centre and a publication database accessible by the Centre members. News and events are also administrated on the website.

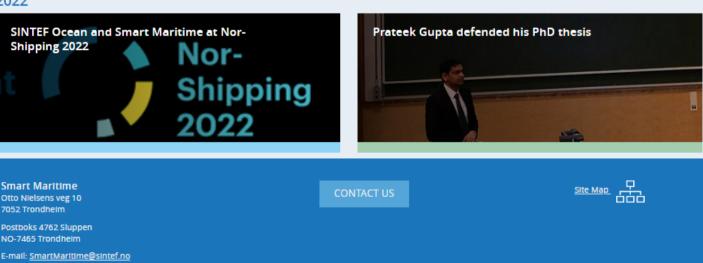

Workshops

The large majority of technical workshops on research topics and associated projects meetings has been handled as digital meetings in 2021.

Webinars

Smart Maritime maintained the frequency of Webinars in 2021 in order to keep partners regularly updated on scientific progress and maintain the dialog between research team and industry partners despite the covid-19 restrictions.

Webinars have been extended to other forums, open to external participants, and involving industry partners in the preparation and discussion.



Dissemination 2021

ANNUAL REPORT 2021

ALL RESOURCES

DISSEMINATION > Smart Maritime in the media 2021

Havila Capella: Nå er første kystruteskip levert

Havila Kystrutens nye skip er spekket med norske nyvinninger.

Modulbygde skip skal gjøre det lettere å bytte til utslippsfritt

Norges mål om å redusere utslipp fra skipsfarten med 50 prosent innen 2030, betyr at det må bygges minst 400 utslippsfrie skip til nærskipsfart og 700 lavutslippsskip. Zerocoaster kan være løsningen.

DISSEMINATION > International arena

ANNUAL REPORT 2021

Solvang-skip får karbonfangst og lagring om bord

Rederiet Solvang skal i 2023 montere et CCS-anlegg om bord på etylenskipet Clipper Eos. Det blir verdens første anlegg for karbonfangst og lagring på et skip.

Skal løse skipsfartens klimagassproblem med multifuel brenselcelle

Rederiet Odfjell satser ikke alt på en hest i kappløpet for å nå nullutslipps shipping. Tester brenselcelle som kan gå på alt fra LNG med karbonfangst til ammoniakk og hydrogen.

Source: Teknisk Ukeblad

European Commission

SCIENTIFIC PUBLICATIONS

Journal articles

Cariou, P., Lindstad, E., Jia, H. 2021. The impact of an EU maritime emissions trading system on oil trades, Transportation Research Part D: Transport and Environment, 99(2021)

Ghimire, P., Zadeh, M., Pedersen, E., Thorstensen, J. 2021.. Dynamic modeling, simulation, and testing of a marine DC hybrid power system. IEEE Transactions on Transportation Electrification

Gupta, P., Taskar, B., Steen, S., Rasheed, A. Statistical modeling of Ship's hydrodynamic performance indicator. Applied Ocean Research 2021.

Karimi, S., Zadeh, M. and Suul, J. A. "A Multi-Layer Framework for Reliability Assessment of Shore-to-Ship Fast Charging System Design," in IEEE Transactions on Transportation Electrification , 2021.

Kramel, D., Muri, H., Kim, Y., Lonka, R., Nielsen, J. B., Ringvold, A., Bouman, E. A., Steen, S., Strømman, A. H. Global Shipping Emissions from a Well-to-Wake Perspective: The MariTEAM model. Environmental Science and Technology 2021.

Lagemann, B.; Seidenberg, T.; Jürgenhake, C.; Erikstad, S. O. & Dumitrescu, R. (2021). System alternatives for modular, zero-emission high-speed ferries. SNAME International Conference on Fast Sea Transportation, doi.org/10.5957/FAST-2021-054

Lindstad, E., Lagemann, B., Rialland, A., Gamlem, G., Valland, A., 2021 Reduction of Maritime GHG emissions and the potential role of E-fuels. Transportation Research Part D

Tavakoli, Sadi; Malekibagherabadi, Kamyar; Schramm, Jesper; Pedersen, Eilif. Fuel consumption and emission reduction of marine lean-burn gas engine employing a hybrid propulsion concept. International Journal of Engine Research 2021 s.

Gupta, et al. (2021). Statistical Modeling of Ship's Hydrodynamic Performance Indicator. Applied Ocean Research 111 (2021) 102623. doi.org/10.13140/RG.2.2.10492.56964 Gupta P., Rasheed A., Steen S. (2021) Ship Performance Monitoring using Machine-learning. Submitted to Journal of Ocean Engineering, preprint arXiv:2110.03594 (2021).

Conference articles

Dæhlen, J., Sandvik, E., Rialland, A., Lagemann, B. A Method for Evaluating Ship Concepts in Realistic Operational Scenarios using Agent-based Discrete-Event Simulation. COMPIT'21 -20th Conference on Computer and IT Applications in the Maritime Industries; 2021-08-09 -2021-08-10

Karimi, S., Zadeh, M. and Suul, J. A. " Operation-based Reliability assessment of Shore-to-Ship Fast Charging Systems," 58th Industrial & Commercial Power Systems Technical Conference) (ICPS) (Accepted for presentation.)

Lagemann, B., Seidenberg, T., Jürgenhake, C., Erikstad, S.O., and Dumitrescu, R. 2021. System alternatives for modular, zero-emission high-speed ferries, SNAME International Conference on Fast Sea Transportation, Providence, Rhode Island, USA, October 2021

Lindstad, E., Rialland, A., Gamlem, G., Valland, A., 2021 Assessment of Alternative Fuels and Engine Technologies to Reduce GHG. SNAME maritime convention 2021. Rode Island 27-29 October 2021

Muri, H. On track to meet the Paris Agreement?. Energy Transition Conference; 2021-04-26

Rialland, A., Lindstad, E. Shipping decarbonization scenarios, 29th Conference of the International Association of Maritime Economists, IAME, 25-27 Nov. 2021, Rotterdam NL.

Malekibagherabadi, Kamyar; Skjong, Stian; Pedersen, Eilif. Bond Graph Approach for Modelling of Proton Exchange Membrane Fuel Cell System. I: Proceedings Of The 2021 International Conference On Bond Graph Modeling And Simulation (ICBGM'2021). The Society for Modeling and Simulation International 2021 ISBN 978-1-7138-3946-0. s. 192-2041

Dissemination 2021

LECTURES

Media / interview / podcast	Lindstad, E
Muri, H. Abels Tårn. NRK P2 [Radio] 2021-06-11	emissions o
Muri, H. "Code red for planet Earth" - latest findings by the IPCC. NTRANS webinar; 2021-08-25	Lindstad, E
Muri, H. Karbonfangeren. Ukeadressa 2021-10-30	Lindstad, E 2021-04-06
Muri, H. Klimahåp i havet. Gemini, 2021-04-21	Muri, Hele
Muri, H; Strømman, A H. :FNs klimapanel Det er mulig å unngå de verste konsekvensene.	26
Forskning.no 2021-08-10	Lindstad, E
Muri, H; Strømman, A H. Rapid action can help prevent the worst consequences of global warming. Norwegian SciTech News 2021-08-09	Lindstad, E web-møte;
Kramel, D; Muri, H; Strømman, A H; Kim, Y; Lonka, R; Nielsen, J B; Ringvold, A; Bouman, E A; Steen, S. A novel bottom-up global ship emission inventory for conventional and alternative fuels in a well-to-wake approach. EGU Annual General Assembly 2021; 2021-04-30	Lindstad, E Maritime T
Conference lecture	Lindstad, E
	Lindstad, E
Lindstad, E. Designing the Ship of the Future 2. MARE FORUM; 2021-01-07	Rederiforb
Lindstad, E. Alternative Fuel Pathways. 3rd Greentech in Shipping Virtual Forum; 2021-03-02	
Lindstad, E. Designing the Ship of the Future 3. MARE FORUM; 2021-02-04	
Lindstad, E. Designing the Ship of the Future 4. MARE FORUM; 2021-03-04	

ANNUAL REPORT 2021

E. Methodology to calculate the life cycle, well-to-wake (WTW) Greenhouse gas (GHG) of fuels used onboard ships.. European commission – ESSF, 2021-03-17

E. Designing the Ship of the Future 5. MARE FORUM; 2021-04-01

E. Scrubbers and Conventional Fuels versus " E-fuels ans Synthetic E-fuels". Riviera; 06

ene. On track to meet the Paris Agreement?. Energy Transition Conference; 2021-04-

E. Designing the Ship of the Future 6. MARE FORUM; 2021-05-06

E. Hvor er de største teknologiske barrierene mot omstilling til Grønn skipsfart. Digitalt e; 2021-05-21

E. Alternative Fuel Pathways- The key role of shippers in the de-carbonization of Transport. Movin on Summit - SC4Good@MOS21; 2021-06-01

E. Designing the Ship of the Future 7. MARE FORUM; 2021-06-03

E. Hvordan kan utslippene fra skipsfarten reduseres med minst 50% før 2050. Norges ound Trainee Program; 2021-06-09

STATEMENT OF ACCOUNTS 2021

	Funding		Cost	
Research council	10 848	(37 %)		
The Host Institution (SINTEF ocean)	8 859	(30 %)	12 756	(43 %)
Research Partner (NTNU)	4 197	(14 %)	12 887	(43 %)
Industry partners	5 813	(20 %)	4 026	(14 %)
Equipment			48	(0.2 %)
Total NOK '000	29 717		29 717	

Illustration: Zero emission ferries, HAV Design

Host: SINTEF Ocean, Marinteknisk senter Tyholt, Otto Nielsens vei 10, 7052 Trondheim

ANNUAL REPORT 2021

rch Council of Norway

PO.Box 4125 Valentinlyst, NO-7450 Trondheim

Web: www.smartmaritime.no