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* To-ship power transfer:
* Shore-to-ship power or cold ironing
* Shore-to-ship charging
e Offshore-to-ship charging

manual connection of two cables for charging the
future of the fjords. Photo: Severin Synnevag

'l SMART " . : ]i. 3
A MARITI M E Charging tower for MF Elektra. Photo: Cavotec



Shore-to-ship Power

* Keeping emissions, noise and vibrations away from ports by
plugging the ship to the shore power instead of running engines
since 2001.

* Around 160 shore power infrastructures around the world (by
Oct. 2021)

e Standardized.
«  |EC 80005-1, IEC 80005-2, and IEC 80005-3
«  |EC 62613-1/2 and IEC 60309-5

Container Ship (2) up to 7,5 MVA
Cruise Ship (4) up to 20 MVA
Reefer (2) up to 10 MVA
Ro-Ro, Ferry (1) up to 6,5 MVA
Tanker (3) up to 3,6 MVA

LNG Carrier (3)

up to 10,7 MVA

= Diverse (1-5)
¢ 400V-690V

'] S MART Shore connection Standards, IEC 80005-1/3. souce: Stemman-Technik
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up to 1000 kVA
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Shore connection for berthed ships. Source: : SSHARBOR

The shore power infrastructure in europe (green: in operation, blue:
decided, and gray: under discussion). source: AFl at DNV




Shore-to-ship Charging (1/3) sfi e

» Shore-to-ship charging (S2SC) system is vital for realization of:

o . Power Cruise o —
* Zero-emission and battery-powered ships : —
* plug-in hybrid ships §
* Applications e masonrch s 9
* Passenger and car ferries -
Inland

° i Z waterway = Leisure 5.

River and channel vessels : . g >
* Regional freight transportation ) , m _—

Minutes ours Connection Time

* Cruise vessels Requirements of different applications of $2SC systems. Source: ABB marine and ports.

* Principals

* Land-based generation into charging.

* Onshore battery if needed for grid support and/or energy arbitrage.

* The charging interconnection by automated plug systems.
. . Land-based
* Onboard charging interface. generation u Battery-powered

Onshore Batteries

vessel

The S25C is the bridge between the land-based generation and
'l the onboard power system.
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Shore-to-ship Charging (2/3) i
*  Power system architecture of shore-to-ship charging systems*:

Onboard Charger

c11
Main DC Bus

Main DC Bus Onboard Charger
c14 C13 | C12 C15
|A| |A| Iél |A| T Grid Interface
5 0
FNER
03 T12 35 32 e
Onshore BESS

Onshore BESS

To-ship Bus " ” To-ship Bus ” ~
— Shore-to-Ship Connection L B -to-Shi i L cs51 =
e |7 8\ m T Shore-to- S:p Connection " G —

:l c36 B32 Main DC Bus Onboard Charger

c6 7 B12
| 53 | cs2

(a) —— = —
: |%| |%| |_=| Grid Interface

(a)
B51

Main AC Bus Shore-to-Ship Connection

Shore Bus
Shore Bus

57 T52

Onshore BESS

Shore Bus

Main AC Bus Onboard Charger

Grid Interface

[ ca3 | [ >
:,:’:, :;;: || . C58  B52
\ s el Coils = /

Grid Interface

D
122

K-ao-® — —
o T A single line diagram of an inductive S2SC system.

Onshore BESS

Onshore BESS Onboard Charger

To-ship Bus
— " Shore-to-Ship Connection ” " L ToshipBus | ” n
e ” T Shore-to-Ship Connection " T |

o] FyE——
25 6 B2 @6 Baz

Shore Bus
Shore Bus

(b) (b)
dc charging for (a) a dc-based propulsion system and (b) an ac-
based propulsion system.

ac charging for (a) a dc-based propulsion system and (b) an ac-
based propulsion system.

- *S, Karimi, M. Zadeh and J. A. Suul, "Shore Charging for Plug-In Battery-Powered Ships: Power System Architecture, infrastructure, and Control," in
“ IEEE Electrification Magazine.




Shore-to-ship Charging (3/3) sf e

* Opportunities
* 350 MWh batteries are in service (source: Foreship).
* 30% lower maintenance (source: Corvus).
* Up to 85% energy source to thrust efficiency compared to 50% diesel mechanical systems.

* For an all-electric ferry with 1600kWh per round trip: 135 Euro (source:E-ferry ellen).

* Challenges
* Preplanned tough operation schedules = critical charging time = high-power charging
* High-power pulse loads = high stress on the grid
* High power and energy requirement = need for strong grid
* Power-electronics-dominated system -2 reliability, stability, efficiency and cost issues
* Lack of a worldwide standard = diversity of the configurations = non-optimal design

* The capital expenditure to utilization ratio is high
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Offshore-to-ship Charging (1/4)

e Offshore Charging for

* Crew Transfer Vessels (CTV)

» Service Operating Vessels (SOV)

* Opportunities .

* Net-zero emission operation, from wind to propellers. .1\ \\
e Low operation cost due to the abundance of the energy source, wind. JI\J ‘ 0
e
* Challenges

» Safety aspects regarding the cables and plugs in water.
* Loss of position due to harsh sea conditions.

* High capital investments.

Source: CharlieChesvick/iStock
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Offshore-to-ship Charging (2/4) e

\
.\
e Offshore Charging from Wind Turbine*:

a) Direct connection to the WTG transformer.
b) Connection to the WTG transformer via a dedicated transformer or converter.

c) Connection to the dc link of the back-to-back converter of WTG.

WTG WTG
WTG LMV MVIHV
LVIMV_ MV/RV / VIMV  MVIAV 4
" —'@—%@ ’._.@_@Z_/.-@_ —
\ ¥ WTG trafo WTG Trafo WTG Trafo
Foundati i
Foundation RV ;’;’C/&{?n Foundation
Buoy .[ l Eucy [@_\lql_\l_ Buoy %_J(
| = [ G 1 .
L H Array / to OSS Ll
(a) b= =< Aray/toOsS (b) e (c) DC Aray /10 OSS
'] Integration of offshore charging into wind turbines*

a MARITIME *V. T. Seemundsson, and O. D. Henriksen, “Offshore charging,” @rsted, October 2", 2020.




Offshore-to-ship Charging (3/4) i ==

e Offshore Charging from Offshore Substation (OSS)*

a) Connection to high voltage side of the OSS transformer (110V ~11kV).
b) Connection to the low voltage side of OSS transformer (11kV ~132kV).

0SS 0ss
LVIMV S v Y MV/HV Fv

—" - To ONS ?@F@f—u—» To ONS
] 1

Buoy j l Buoy l
Vessel /I .i Vessel | (
L. 1 =3 Array | | ~» Array
—

* (a) === (b)

Integration of offshore charging into Offshore Substation*

& MARITIME *V. T. Semundsson, and O. D. Henriksen, “Offshore charging,” @rsted, October 29, 2020.




Offshore-to-ship Charging (4/4) S ==

* Other options to be evaluated:

* Offshore batteries vs emergency diesel generators.
» Offshore PV.

* Integration to the HVDC rectifier station.

* Need for a comprehensive study on the benchmarking of the solutions.

Onshore

(N
T

Wind farm

2
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Design Framework

Objectives
* To benchmark all the feasible design solutions.
* Mapping of the operation scenarios. Grid

* Applications

* All types of to-ship power transfer systems.

* Requirements

e Manufacturers' datasheets.
* System requirements form ship operators.

* Challenges
* Modeling: trade-off between the simplicity and fidelity.
* Computational effort: the complex system.
* Uncertainty in design.

* More performance indicators
e Power quality of the onshore grid. The single e aiagrom of an alelectric
* Quay space for the onshore facilities.
* Weight of onboard interface.
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Design Framework

* Energy efficiency modeling

Operational parameters
(OBB charging time and power, OSB scheduling and load
sharing )

' ' '

A. Component Level B. Sub-system Level C. System Level

U A

Design parameters
(datasheets, system topology and component design)
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e Results

~DC-FOSBC

Overall energy efficiency curves for different charging solutions (IPT stands for Inductive
Power Transfer) used for a (a) dc-based and a (b) ac-based propulsion system.

* Efficiency of ac charging > dc charging > inductive charging (no onshore battery)
* Charge onshore batteries with the highest available grid power = higher energy
efficiency.
'] * Inductive charging can be even more efficient than ac charging.

SMART
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* Reliability modeling

e Results

$25 connection

@

(a)The ac S2SC system and (b) the dc S2SC system

1000vdc

Shore

$2S connection
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1000vdc

(b)

* The reliability comparison between ac and dc charging systems:

The calculated reliability indices for ac and dc charging systems
LCE: Loss of Charging Expected, DCE: Derated Charging Expected, MTTFF: Meantime to the First Failure

Reliability index AC 525C DC S25C

system system

LOCE
2 2.02
(charging break/yr) 9% 0

DCE

(charging break /yr) 64.63 62.95

MTTFF (yr) 9.77 13.49

* Higher share of onshore battery = lower reliability

* Lower number of parallel units = higher reliability
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Universal Charging
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. . o . .
. Mot|vat|on ObjeCtlves
«  Improve the utilization of the infrastructures. *  Compatible to the most common onboard charging interfaces.
*  Various onboard power system configurations (retrofit and newly built.) *  Compatible to concurrent charging requests.
*  Ever-increasing the need for infrastructures for zero-emission vessels. *  Minimization of the power conversion stages.
*  Modern electrified ports.
g Charging
@ Management
SHEE Ship#.
WA e
Main dc bus Main dc bus l g é
A & &
-~ @
ac load dc load ac load - = g
M)
(a) (b)
OBB
Ship#3 _R#3
acto-ship dc to-ship 2 $ IE E_, 8
[ )|g
G o Ship#a R4 cia o
Main ac bus Main ac bus 04 — oo
~ =74 B (| [+
ﬁ g Shore $ = z
ac bus
deload % acload deload % acload The proposed multi-vessel universal S2SC system (dotted lines representing the control and
measurement signals, and the solid lines are showing the power line).
©) (d)
S MART The common power system architecture of plug-in hybrid marine vessels with (a) floating dc

bus, (b) voltage-controlled dc bus, (c) floating ac bus and (c) voltage-controlled ac bus.
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Research summary f
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* Shore-to-ship charging systems have been successfully enabling the utilization of batteries
onboard towards the zero-emission shipping.

* The challenges around the shore-to-ship charging systems were introduced: cost,
efficiency, reliability and interoperability.

* The technical solutions of the offshore-to-ship charging were briefly introduced.

* A design framework for to-ship power systems based on the defined performance
indicators was proposed.

* A universal shore-to-ship charging system for modern ports was proposed.
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Introduction to high power wireless charging

- Research for improving power density

Jon Are Suul
SINTEF Energi AS & NTNU Department of Engineering Cybernetics
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Inductive charging for ships

* Dedicated technology for high power charging
demonstrated by Wartsila

e 1.2 MW power transfer with up to 50 cm transmission distance

* More than one year of regular operation with MF Folgefonn from 2017

 Solution from IPT Technology
adapted to marine applications

* Solution developed from existing
technology for charging of busses

e Regular operation of 100 kW system
in Fredrikstad since 2019

Inductive charging by Wartsila




Development for ship applications in Norway

Wireless high-power battery charging for ships

* Concept developed in Norway from 2013 to 2015
* Innovation project supported by the Research Council of Norway (MAROFF)

e Design concept demonstrated at SINTEF Energy

C

* Full-scale system rated for ARTEILA
1 MW power transfer
demonstrated by Wartsila

in laboratory environment

Inductive
koupler

FJELLSTRAND

e’

SKL\\,

Energi til utvikling

| NORLEDE=

BNTNU SINTEF



Demonstration

* The first system was installed on the ferry MS
Folgefonn for operation in August 2017

* Regular operation of the pilot installation as a
demonstration case until October 2018

* Operated with 1.2 MW power transfer

* Fully autonomous docking

* Demonstration from spring 2018

* First electric ferry with
combined autonomous
docking and charging

EBNTNU @ SINTEF

i (D2
"."" VB [ 2




Limitations of previous high power concept

* High weight and large required area

* Not a problem for large vessels

* Prevents application to light vessels

* Practical design adapted to
commercially available components

»New high power applications require
research beyond the timeframe of Example: Urban Water Shuttle —

) . . concept by NCE MaritimeCleanTech
commercial applications
ONTNU SINTEF



Requirements for light vessel applications

* High power levels

* Similar power range as for large ferries: 1-5 MW e

o Ultra-compact Design
o Autonomous Charging

¢, On-board Installation

* Drastic reduction of weigh R
* From multiple tonn/MW to 300-500 kg/MW

G

Sending- | .
DC side L
Converter

* Minimized surface area and volume

* Smaller vessels have less available hull area and
significantly less available on-board space

27 ONTNU SINTEF
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Ultra-high power density wireless

PrOjECt Outl | ne charging for maritime applications

Jon Are Suul

Project manager

° FU nded by the Resea rCh COunCiI Of Norway and NTNU Department of Engineering Cybernetics / SINTEF Energi AS
i iti i ERFET NANYANG
Singapore Maritime Institute (SMI) ®NTNU R NANYANG

UNIVERSITY
SINGAPORE F

Norwegian University of SI NTEF @

e Cooperation between NTNU, SINTEF Energi AS and Science and Technology
Nanyang Technological University (NTU)

WP1 - Performance Requirements

* General objective: Advance the scientific methods

needed to enable new applications of technology

for wireless inductive power transfer (IPT) in v | e ||

maritime applications: l

. . . ( WP2 — Multi-Physics ) WP3 = Dynamic Modeling ( WP4 — Control
* Design target: High power density IPT systems f e
. . ptimization NTU || NTNU NTNU
reaching 3 kW/kg for the coils and 2 kW/kg for the 3
WP5 — Prototyping and Demo

* Associated industry partners: Wartsila Norway AS st N B \
and Xnergi ‘[ I

\ J
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Project team

#:n * NTNU, Department of Engineering Cybernetics

e Marta Molinas, co-supervisor of PhD grant

e Jiayu Zhou, PhD student

* SINTEF Energy Research

* Nanyang Technological University

e Xin Li, Research Fellow working with system modelling

* Yiming Zhang, Research Fellow (Aug 19~Dec 20) working on coil design

* Jon Are Suul, Project manager and supervisor of PhD study on modelling and control

* Giuseppe Guidi, key researcher on design optimization and demonstration

* Yi Tang, Principal Investigator / local project manager for activities in Singapore funded by SMI

e Shuxin Chen, Research Associate working with power electronics hardware design

ONTNU SINTEF



Basic principles for high power design

****************************************

- . ! dl’; 3 (Tnfertiir) i | (2:1;:2?:) Lﬁm
* Minimum number of components | @ ***************** s s @S
i . . H iens C1 R Ly L, R, G ipik} i . .
* Reduced complexity and cost Voei| | —;n—wwm—%; = ﬁ} v
_——_i:: li Veend M.diﬂ ¥ iy Viiek| 1 i e d —
e Cost of high power component does not scale | I “« T o I |
linearly with rating | HK}LR“‘“M""°"'b°a"’c°" ,,,,,,, i HK& H@

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

» One is usually better (and cheaper) than two halves

* Increased reliability
* Advanced control rather than additional hardware
* High performance digital control is cheaper than high-power components.

* Prioritize cost/volume for pickups
* Pickups add onboard weight and volume leading to increased energy requirements — Charger units do not
* One charger usually serves many pickups — Interoperable designs are needed

* Pickups are always paid by vehicle/ship owner — Chargers often are not

ONTNU SINTEF



Selected research challenges

Electromagnetic and thermal design

* Loss calculation in high current Litz-wires

* Thermal conductivity of high current Litz-wires

e Cooling methods

Multidomain optimization

* Coil layout

* Operating frequency and resonant circuit

* Operating principle
Converter design

* Utilization of SiC components

Control system design
» Voltage/frequency control
 PWM/PDM techniques

Strand-level

Bundle-level

Skin Effect

Proximity
Effect

PIP,,

Wtzh
B Fint J‘ > Wy
- V“ 7
ty B ® & @ @
15 D i — "
[r— ; __________________
=7
\ g 0.92
N g
4\ hlll 0.9
\\_M_ \‘l
ll 0.88 %M

0.15

0.2

0.25

0.35

Active Volume@ NTNU SINTEF



Outlook for wireless charging

* Already a proven technology up to MW-scale

e Eliminates connection/disconnection time

No exposed contacts -> Safe and reliable operation

Fully automatable operation

High power transfer efficiency (> 95 %)

Adaptable for any on-board and on-shore power system configurations

* Next steps
e Standardization
* Market introduction and productification

* Research needs
* Improving power density for new applications (light/high-speed vessels)

* Reducing cost

e Upscaling towards power levels beyond 5 MW



Way forward S f.
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Reliability

esign innovations

Ja SMART
~~ MARITIME




Thank you for your attention!

Questions?
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