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Outline

• Principle of shore-to-ship power transfer and charging 

• Offshore-to-ship charging

• Design framework 

• Universal shore-to-ship charging

• High power wireless charging 

• Way forward



Introduction

• To-ship power transfer: 

• Shore-to-ship power or cold ironing 

• Shore-to-ship charging 

• Offshore-to-ship charging

FerryCHARGER. Photo: Stemmann-Technikmanual connection of two cables for charging the 
future of the fjords. Photo: Severin Synnevåg

Charging tower for MF Elektra. Photo: Cavotec



Shore-to-ship Power

Shore connection for berthed ships. Source: : SIHARBOR

• Keeping emissions, noise and vibrations away from ports by 
plugging the ship to the shore power instead of running engines 
since 2001.

• Around 160 shore power infrastructures around the world (by 
Oct. 2021)

• Standardized.
• IEC 80005-1, IEC 80005-2, and IEC 80005-3

• IEC 62613-1/2 and IEC 60309-5

The shore power infrastructure in europe (green: in operation, blue: 
decided, and gray: under discussion). source: AFI at DNV

Shore connection Standards, IEC 80005-1/3. souce: Stemman-Technik



Shore-to-ship Charging (1/3)

• Shore-to-ship charging (S2SC) system is vital for realization of:

• Zero-emission and battery-powered ships

• plug-in hybrid ships 

• Applications

• Passenger and car ferries 

• River and channel vessels 

• Regional freight transportation 

• Cruise vessels

• Principals

• Land-based generation into charging.

• Onshore battery if needed for grid support and/or energy arbitrage.

• The charging interconnection by automated plug systems.

• Onboard charging interface.

Requirements of different applications of S2SC systems. Source: ABB marine and ports.

The S2SC is the bridge between the land-based generation and 
the onboard power system.



ac charging for (a) a dc-based propulsion system and (b) an ac-
based propulsion system.

dc charging for (a) a dc-based propulsion system and (b) an ac-
based propulsion system.

A single line diagram of an inductive S2SC system.
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*S. Karimi, M. Zadeh and J. A. Suul, "Shore Charging for Plug-In Battery-Powered Ships: Power System Architecture, infrastructure, and Control," in 
IEEE Electrification Magazine.  

Shore-to-ship Charging (2/3)
• Power system architecture of shore-to-ship charging systems*:



• Opportunities

• 350 MWh batteries are in service (source: Foreship).

• 30% lower maintenance (source: Corvus).

• Up to 85% energy source to thrust efficiency compared to 50% diesel mechanical systems. 

• For an all-electric ferry with 1600kWh per round trip: 135 Euro (source:E-ferry ellen).

• Challenges

• Preplanned tough operation schedules → critical charging time → high-power charging 

• High-power pulse loads → high stress on the grid 

• High power and energy requirement→ need for strong grid

• Power-electronics-dominated system → reliability, stability, efficiency and cost issues

• Lack of a worldwide standard→ diversity of the configurations → non-optimal design

• The capital expenditure to utilization ratio is high

Shore-to-ship Charging (3/3)



Offshore-to-ship Charging (1/4)

Source: CharlieChesvick/iStock 

• Offshore Charging for

• Crew Transfer Vessels (CTV)

• Service Operating Vessels (SOV)

• Opportunities

• Net-zero emission operation, from wind to propellers.

• Low operation cost due to the abundance of the energy source, wind.

• Challenges

• Safety aspects regarding the cables and plugs in water.

• Loss of position due to harsh sea conditions.

• High capital investments.



Integration of offshore charging into wind turbines*  

*V. T. Sæmundsson, and O. D. Henriksen, “Offshore charging,” Ørsted, October 2nd, 2020.  

• Offshore Charging from Wind Turbine*:

a) Direct connection to the WTG transformer.

b) Connection to the WTG transformer via a dedicated transformer or converter.

c) Connection to the dc link of the back-to-back converter of WTG.

Offshore-to-ship Charging (2/4)

(a) (b) (c)



*V. T. Sæmundsson, and O. D. Henriksen, “Offshore charging,” Ørsted, October 2nd, 2020.  

• Offshore Charging from Offshore Substation (OSS)*

a) Connection to high voltage side of the OSS transformer (110V ~11kV).

b) Connection to the low voltage side of OSS transformer (11kV ~132kV).

Offshore-to-ship Charging (3/4)

(a) (b)

Integration of offshore charging into Offshore Substation*  



• Other options to be evaluated:

• Offshore batteries vs emergency diesel generators.

• Offshore PV. 

• Integration to the HVDC rectifier station.

• Need for a comprehensive study on the benchmarking of the solutions.

Offshore-to-ship Charging (4/4)

Integration of offshore charging into HVDC rectifier with offshore batteries and offshore PV.

+ -

Wind farm

HVDC 
Onshore

 Grid

Offshore DC hub



• Objectives
• To benchmark all the feasible design solutions.

• Mapping of the operation scenarios.

• Applications
• All types of to-ship power transfer systems.

• Requirements
• Manufacturers' datasheets.
• System requirements form ship operators.

• Challenges
• Modeling: trade-off between the simplicity and fidelity.
• Computational effort: the complex system.
• Uncertainty in design.

• More performance indicators
• Power quality of the onshore grid.
• Quay space for the onshore facilities.
• Weight of onboard interface.

Design Framework

The single line diagram of an all-electric 
ship with dc shore-to-ship charging.



• Energy efficiency modeling

• Results

• Efficiency of ac charging > dc charging > inductive charging (no onshore battery)

• Charge onshore batteries with the highest available grid power → higher energy 

efficiency.

• Inductive charging can be even more efficient than ac charging.

Design Framework

Design parameters 

(datasheets, system topology and component design)

C
o

m
p

o
n

en
t 

P
o

w
er

 

L
o

ss

Output 

V/I 

Power 

loss

A. Component Level

Input

 V/I 

Datasheet

 input

Design

 parameters

G
I

G
I

O
S

B
-c

O
S

B
-d

S
2
S

 

O
B

C Etot

E
lo

ss1

C. System Level

EG

EB

E
lo

ss2

E
lo

ss3

E
lo

ss4

E
lo

ss5  

E
lo

ss6

S
u

b
-s

y
st

em
 E

n
er

g
y
 

lo
ss

Output 

power

Energy 

loss

Input

 power 

Design

 parameters

time

B. Sub-system Level

c

Operational parameters 

(OBB charging time and power, OSB scheduling and load 

sharing )

The proposed S2S charging energy efficiency calculation model.

• Reliability modeling

• Results
• The reliability comparison between ac and dc charging systems:

• Higher share of onshore battery → lower reliability

• Lower number of parallel units → higher reliability 

(a)The ac S2SC system and (b) the dc S2SC system

The calculated reliability indices for ac and dc charging systems
LCE: Loss of Charging Expected, DCE: Derated Charging Expected, MTTFF: Meantime to the First Failure
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Overall energy efficiency curves for different charging solutions (IPT stands for Inductive 
Power Transfer) used for a (a) dc-based and a (b) ac-based propulsion system.



The common power system architecture of plug-in hybrid marine vessels with (a) floating dc 
bus, (b) voltage-controlled dc bus, (c) floating ac bus and (c) voltage-controlled ac bus. 

Universal Charging 

• Motivation
• Improve the utilization of the infrastructures.

• Various onboard power system configurations (retrofit and newly built.)

• Ever-increasing the need for infrastructures for zero-emission vessels.

• Modern electrified ports.
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The proposed multi-vessel universal S2SC system (dotted lines representing the control and 
measurement signals, and the solid lines are showing the power line).

• Objectives
• Compatible to the most common onboard charging interfaces.

• Compatible to concurrent charging requests. 

• Minimization of the power conversion stages.



Research summary

• Shore-to-ship charging systems have been successfully enabling the utilization of batteries 

onboard towards the zero-emission shipping.

• The challenges around the shore-to-ship charging systems were introduced: cost, 

efficiency, reliability and interoperability. 

• The technical solutions of the offshore-to-ship charging were briefly introduced.

• A design framework for to-ship power systems based on the defined performance 

indicators was proposed.

• A universal shore-to-ship charging system for modern ports was proposed.



Introduction to high power wireless charging 

- Research for improving power density

Jon Are Suul

SINTEF Energi AS & NTNU Department of Engineering Cybernetics



Inductive charging for ships

• Dedicated technology for high power charging 

demonstrated by Wärtsilä

• 1.2 MW power transfer with up to 50 cm transmission distance

• More than one year of regular operation with MF Folgefonn from 2017

• Solution from IPT Technology

adapted to marine applications

• Solution developed from existing 

technology for charging of busses

• Regular operation of 100 kW system

in Fredrikstad since 2019

Inductive charging by IPT Technology

Inductive charging by Wärtsilä



Development for ship applications in Norway

Wireless high-power battery charging for ships

• Concept developed in Norway from 2013 to 2015

• Innovation project supported by the Research Council of Norway (MAROFF)

• Design concept demonstrated at SINTEF Energy

• Full-scale system rated for

1 MW power transfer 

demonstrated by Wärtsilä

in laboratory environment 



Demonstration

• The first system was installed on the ferry MS 

Folgefonn for operation in August 2017

• Regular operation of the pilot installation as a 

demonstration case until October 2018

• Operated with 1.2 MW power transfer

• Fully autonomous docking

• Demonstration from spring 2018

• First electric ferry with 

combined autonomous 

docking and charging



Limitations of previous high power concept

• High weight and large required area

• Not a problem for large vessels

• Prevents application to light vessels

• Practical design adapted to 

commercially available components

➢New high power applications require 

research beyond the timeframe of 

commercial applications

Example: Urban Water Shuttle –
concept by NCE MaritimeCleanTech



Requirements for light vessel applications

• High power levels

• Similar power range as for large ferries: 1-5 MW

• Drastic reduction of weigh

• From multiple tonn/MW to 300-500 kg/MW

• Minimized surface area and volume

• Smaller vessels have less available hull area and 

significantly less available on-board space

27



Project Outline

• Funded by the Research Council of Norway and 
Singapore Maritime Institute (SMI)

• Cooperation between NTNU, SINTEF Energi AS and 
Nanyang Technological University (NTU)

• General objective: Advance the scientific methods 
needed to enable new applications of technology 
for wireless inductive power transfer (IPT) in 
maritime applications:

• Design target: High power density IPT systems 
reaching 3 kW/kg for the coils and 2 kW/kg for the 
total on-board system

• Associated industry partners: Wärtsilä Norway AS 
and Xnergi

28



Project team

• NTNU, Department of Engineering Cybernetics

• Jon Are Suul, Project manager and supervisor of PhD study on modelling and control

• Marta Molinas, co-supervisor of PhD grant

• Jiayu Zhou, PhD student

• SINTEF Energy Research

• Giuseppe Guidi, key researcher on design optimization and demonstration

• Nanyang Technological University

• Yi Tang, Principal Investigator / local project manager for activities in Singapore funded by SMI 

• Shuxin Chen, Research Associate working with power electronics hardware design

• Xin Li, Research Fellow working with system modelling

• Yiming Zhang, Research Fellow (Aug 19~Dec 20) working on coil design
29
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Basic principles for high power design

• Minimum number of components
• Reduced complexity and cost

• Cost of high power component does not scale 
linearly with rating

➢One is usually better (and cheaper) than two halves

• Increased reliability

• Advanced control rather than additional hardware

• High performance digital control is cheaper than high-power components.

• Prioritize cost/volume for pickups
• Pickups add onboard weight and volume leading to increased energy requirements – Charger units do not

• One charger usually serves many pickups – Interoperable designs are needed

• Pickups are always paid by vehicle/ship owner – Chargers often are not
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Selected research challenges

• Electromagnetic and thermal design

• Loss calculation in high current Litz-wires

• Thermal conductivity of high current Litz-wires

• Cooling methods

• Multidomain optimization

• Coil layout

• Operating frequency and resonant circuit

• Operating principle

• Converter design
• Utilization of SiC components

• Control system design

• Voltage/frequency control

• PWM/PDM techniques



Outlook for wireless charging

• Already a proven technology up to MW-scale
• Eliminates connection/disconnection time

• No exposed contacts -> Safe and reliable operation 

• Fully automatable operation

• High power transfer efficiency (> 95 %)

• Adaptable for any on-board and on-shore power system configurations

• Next steps
• Standardization

• Market introduction and productification

• Research needs 

• Improving power density for new applications (light/high-speed vessels)

• Reducing cost

• Upscaling towards power levels beyond 5 MW



Shore to ship electrification

Environmental sustainability 

Availability Design innovations

Cost-effective design

Flexibility 

Energy efficiency

Way forward

Reliability



Thank you for your attention!

Questions?

34


